cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354650 G.f. A(x,y) satisfies: -y = f(-x,-A(x,y)), where f(x,y) = Sum_{n=-oo..oo} x^(n*(n+1)/2) * y^(n*(n-1)/2) is Ramanujan's theta function.

Original entry on oeis.org

1, 1, 0, 3, 3, 1, 0, 9, 27, 30, 15, 3, 0, 22, 147, 340, 390, 246, 83, 12, 0, 51, 630, 2530, 5070, 5928, 4284, 1908, 486, 55, 0, 108, 2295, 14595, 45450, 83559, 98910, 78282, 41580, 14355, 2937, 273, 0, 221, 7476, 70737, 319605, 849450, 1472261, 1757688, 1484451, 891890, 375442, 105930, 18109, 1428, 0, 429, 22302, 301070, 1886010, 6878907, 16386636, 27205308, 32683680, 28981855, 19081854, 9258678, 3231514, 771225, 113220, 7752
Offset: 0

Views

Author

Paul D. Hanna, Jun 02 2022

Keywords

Comments

Unsigned version of A354649.
Column 1 equals A000716, with g.f. P(x)^3 where P(x) = exp( Sum_{n>=1} sigma(n)*x^n/n ) is the partition function.
The rightmost border equals A001764, with g.f. C(x) = 1 + x*C(x)^3.
T(n,1) = A000716(n), for n >= 0.
T(n,2) = A354655(n), for n >= 1.
T(n,3) = A354656(n), for n >= 1.
T(n,n) = A354658(n), for n >= 0.
T(n,n+1) = A354659(n), for n >= 0.
T(n,2*n) = A354660(n), for n >= 0.
T(n,2*n+1) = A001764(n), for n >= 0.
Antidiagonal sums = A268650.
Row sums = A268299 (with offset).
Sum_{k=0..2*n+1} T(n,k)*2^k = A354652(n), for n >= 0.
Sum_{k=0..2*n+1} T(n,k)*3^k = A354653(n), for n >= 0.
Sum_{k=0..2*n+1} T(n,k)*4^k = A354654(n), for n >= 0.
Sum_{k=0..2*n+1} T(n,k)*(-1)^k = -A354661(n), for n >= 0.
Sum_{k=0..2*n+1} T(n,k)*(-2)^k = -A354662(n), for n >= 0.
Sum_{k=0..2*n+1} T(n,k)*(-3)^k = -A354663(n), for n >= 0.
Sum_{k=0..2*n+1} T(n,k)*(-4)^k = -A354664(n), for n >= 0.
SPECIFIC VALUES.
(1) A(x,y) = -exp(-Pi) at x = -exp(-Pi), y = -Pi^(1/4)/gamma(3/4).
(2) A(x,y) = -exp(-2*Pi) at x = -exp(-2*Pi), y = -Pi^(1/4)/gamma(3/4) * (6 + 4*sqrt(2))^(1/4)/2.
(3) A(x,y) = -exp(-3*Pi) at x = -exp(-3*Pi), y = -Pi^(1/4)/gamma(3/4) * (27 + 18*sqrt(3))^(1/4)/3.
(4) A(x,y) = -exp(-4*Pi) at x = -exp(-4*Pi), y = -Pi^(1/4)/gamma(3/4) * (8^(1/4) + 2)/4.
(5) A(x,y) = -exp(-sqrt(3)*Pi) at x = -exp(-sqrt(3)*Pi), y = -gamma(4/3)^(3/2)*3^(13/8)/(Pi*2^(2/3)).

Examples

			G.f.: A(x,y) = (1 + y) + x*(3*y + 3*y^2 + y^3) + x^2*(9*y + 27*y^2 + 30*y^3 + 15*y^4 + 3*y^5) + x^3*(22*y + 147*y^2 + 340*y^3 + 390*y^4 + 246*y^5 + 83*y^6 + 12*y^7) + x^4*(51*y + 630*y^2 + 2530*y^3 + 5070*y^4 + 5928*y^5 + 4284*y^6 + 1908*y^7 + 486*y^8 + 55*y^9) + x^5*(108*y + 2295*y^2 + 14595*y^3 + 45450*y^4 + 83559*y^5 + 98910*y^6 + 78282*y^7 + 41580*y^8 + 14355*y^9 + 2937*y^10 + 273*y^11) + ...
such that A = A(x,y) satisfies:
(1) -y = ... + x^36*A^28 - x^28*A^21 + x^21*A^15 - x^15*A^10 + x^10*A^6 - x^6*A^3 + x^3*A - x + 1 - A + x*A^3 - x^3*A^6 + x^6*A^10 - x^10*A^15 + x^15*A^21 - x^21*A^28 + x^28*A^36 + ...
(2) -y = (1 - x*A)*(1 - A)*(1-x) * (1 - x^2*A^2)*(1 - x*A^2)*(1 - x^2*A) * (1 - x^3*A^3)*(1 - x^2*A^3)*(1 - x^3*A^2) * (1 - x^4*A^4)*(1 - x^3*A^4)*(1 - x^4*A^3) * (1 - x^5*A^5)*(1 - x^4*A^5)*(1 - x^5*A^4) * ...
(3) -y = (1-x) - (1-x^3)*A + x*(1-x^5)*A^3 - x^3*(1-x^7)*A^6 + x^6*(1-x^9)*A^10 - x^10*(1-x^11)*A^15 + x^15*(1-x^13)*A^21 - x^21*(1-x^15)*A^28 + ...
(4) -y = (1-A) - (1-A^3)*x + A*(1-A^5)*x^3 - A^3*(1-A^7)*x^6 + A^6*(1-A^9)*x^10 - A^10*(1-A^11)*x^15 + A^15*(1-A^13)*x^21 - A^21*(1-A^15)*x^28 + ...
This triangle of coefficients of x^n*y^k in g.f. A(x,y) for n >= 0, k = 0..2*n+1, begins:
1, 1;
0, 3, 3, 1;
0, 9, 27, 30, 15, 3;
0, 22, 147, 340, 390, 246, 83, 12;
0, 51, 630, 2530, 5070, 5928, 4284, 1908, 486, 55;
0, 108, 2295, 14595, 45450, 83559, 98910, 78282, 41580, 14355, 2937, 273;
0, 221, 7476, 70737, 319605, 849450, 1472261, 1757688, 1484451, 891890, 375442, 105930, 18109, 1428;
0, 429, 22302, 301070, 1886010, 6878907, 16386636, 27205308, 32683680, 28981855, 19081854, 9258678, 3231514, 771225, 113220, 7752;
0, 810, 62100, 1157820, 9729720, 46977378, 147584556, 324283068, 520974180, 628884300, 579226362, 409367712, 221218179, 90115620, 26879160, 5559408, 715122, 43263; ...
The rightmost border equals A001764, with g.f. C(x) = 1 + x*C(x)^3.
Column 1 equals A000716, with g.f. P(x)^3 where P(x) = exp( Sum_{n>=1} x^n/(n*(1-x^n)) ) is the partition function.
		

Crossrefs

Cf. A000716 (column 1), A354655 (column 2), A354656 (column 3).
Cf. A354658 (T(n,n)), A354659 (T(n,n+1)), A354660 (T(n,2*n)), A001764 (right border).
Cf. A268299 (y=1), A354652 (y=2), A354653 (y=3), A354654 (y=4).
Cf. A354661 (y=-1), A354662 (y=-2), A354663 (y=-3), A354664 (y=-4).
Cf. A268650 (antidiagonal sums), A354657, A354649.

Programs

  • PARI
    {T(n,k) = my(A=[1+y]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff(y + sum(m=0,sqrtint(2*#A+9), (-1)^m * x^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );
    polcoeff(A[n+1],k,y)}
    for(n=0,12,for(k=0,2*n+1,print1(T(n,k),", "));print(""))

Formula

G.f. A(x,y) = Sum_{n>=0} x^n * Sum_{k=0..2*n+1} T(n,k)*y^k satisfies:
(1) -y = A(-x,-f(x,y)) = Sum_{n>=0} (-x)^n * Sum_{k=0..2*n+1} (-1)^n * T(n,k) * f(x,y)^k, where f(,) is Ramanujan's theta function.
(2) -y = f(-x,-A(x,y)) = Sum_{n=-oo..oo} (-1)^n * x^(n*(n-1)/2) * A(x,y)^(n*(n+1)/2), where f(,) is Ramanujan's theta function.
(3) -y = Product_{n>=1} (1 - x^n*A(x,y)^n) * (1 - x^(n-1)*A(x,y)^n) * (1 - x^n*A(x,y)^(n-1)), by the Jacobi triple product identity.
(4) -y = Sum_{n>=0} (-1)^n * x^(n*(n-1)/2) * (1 - x^(2*n+1)) * A(x,y)^(n*(n+1)/2).
(5) -y = Sum_{n>=0} (-1)^n * A(x,y)^(n*(n-1)/2) * (1 - A(x,y)^(2*n+1)) * x^(n*(n+1)/2).
Formulas for terms in rows.
(6) T(n,1) = A000716(n), the number of partitions of n into parts of 3 kinds.
(7) T(n,2*n+1) = A001764(n) = binomial(3*n,n)/(2*n+1), for n >= 0.