A354699 T(w,h) is the number of non-congruent triangles with distinct side lengths whose vertices with integer coordinates (x_i, y_i) all lie on the perimeter of a rectangle of width w and height h, with max(x_i)-min(x_i) = w and max(y_i)-min(y_i) = h.
0, 2, 1, 4, 5, 3, 5, 6, 7, 4, 7, 8, 8, 9, 6, 8, 9, 10, 11, 12, 7, 10, 11, 12, 13, 14, 15, 9, 11, 12, 13, 13, 15, 16, 17, 10, 13, 14, 14, 16, 17, 18, 19, 20, 12, 14, 15, 16, 17, 18, 18, 20, 20, 22, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 16
Offset: 1
Examples
The triangle begins: 0; 2, 1; 4, 5, 3; 5, 6, 7, 4; 7, 8, 8, 9, 6; 8, 9, 10, 11, 12, 7; 10, 11, 12, 13, 14, 15, 9; 11, 12, 13, 13, 15, 16, 17, 10; 13, 14, 14, 16, 17, 18, 19, 20, 12; 14, 15, 16, 17, 18, 18, 20, 20, 22, 13 . T(2,1) = 2: 1 | . . C Squared sides s^2: 0 | A B . AB = 1, BC = 2, CA = 5 y /------ x 0 1 2 1 | . . C 0 | A . B AB = 4, BC = 1, CA = 5 y /------ x 0 1 2 . T(2,2) = 1: 2 | . . C 1 | . . . Squared sides s^2: 0 | A B . AB = 1, BC = 5, CA = 8 y /------ x 0 1 2 . T(3,1) = 4: 1 | . . . C 1 | . . . C 1 | . . . C 1 | . C . . 0 | A B . . 0 | A . B . 0 | A . . B 0 | A . . B y /-------- y /-------- y /-------- y /-------- x 0 1 2 3 x 0 1 2 3 x 0 1 2 3 x 0 1 2 3 s^2: {1,5,10} {2,4,10} {1,9,10} {2,5,9} . T(3,2) = 5: 2 | . . . C 2 | . . . C 2 | . . . C 2 | . . . C 2 | . C . . 1 | . . . . 1 | . . . . 1 | . . . . 1 | . . . B 1 | . . . . 0 | A B . . 0 | A . B . 0 | A . . B 0 | A . . . 0 | A . . B y /-------- y /-------- y /-------- y /-------- y /-------- x 0 1 2 3 x 0 1 2 3 x 0 1 2 3 x 0 1 2 3 x 0 1 2 3 s^2: {1,8,13} {4,5,13} {4,9,13} {1,10,13} {5,8,9} . T(3,3) = 3: 3 | . . . C 3 | . . . C 3 | . C . . 2 | . . . . 2 | . . . . 2 | . . . . 1 | . . . . 1 | . . . . 1 | . . . . 0 | A B . . 0 | A . B . 0 | A . . B y /-------- y /-------- y /-------- x 0 1 2 3 x 0 1 2 3 x 0 1 2 3 s^2: {1,13,18} {4,10,18} {9,10,13}
Links
- Hugo Pfoertner, PARI program
Crossrefs
Cf. A354700.
Programs
-
PARI
\\ See link.
Comments