cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354789 a(2*n) = 9*2^n - 7, a(2*n+1) = 3*2^(n+2) - 7.

Original entry on oeis.org

2, 5, 11, 17, 29, 41, 65, 89, 137, 185, 281, 377, 569, 761, 1145, 1529, 2297, 3065, 4601, 6137, 9209, 12281, 18425, 24569, 36857, 49145, 73721, 98297, 147449, 196601, 294905, 393209, 589817, 786425, 1179641, 1572857, 2359289, 3145721, 4718585, 6291449, 9437177, 12582905, 18874361, 25165817, 37748729, 50331641, 75497465
Offset: 0

Views

Author

N. J. A. Sloane, Jul 14 2022

Keywords

Crossrefs

The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283.

Programs

  • Mathematica
    LinearRecurrence[{1,2,-2},{2,5,11},100] (* Paolo Xausa, Oct 17 2023 *)
    CoefficientList[Series[(2+3x+2x^2)/((1-x)(1-2x^2)),{x,0,50}],x] (* Harvey P. Dale, Jun 07 2024 *)

Formula

G.f.: (2 + 3*x + 2*x^2)/((1 - x)*(1 - 2*x^2)). - Stefano Spezia, Feb 05 2023
E.g.f.: - 7*cosh(x) + 9*cosh(sqrt(2)*x) - 7*sinh(x) + 6*sqrt(2)*sinh(sqrt(2)*x). - Stefano Spezia, Jul 25 2024