A354794 Triangle read by rows. The Bell transform of the sequence {m^m | m >= 0}.
1, 0, 1, 0, 1, 1, 0, 4, 3, 1, 0, 27, 19, 6, 1, 0, 256, 175, 55, 10, 1, 0, 3125, 2101, 660, 125, 15, 1, 0, 46656, 31031, 9751, 1890, 245, 21, 1, 0, 823543, 543607, 170898, 33621, 4550, 434, 28, 1, 0, 16777216, 11012415, 3463615, 688506, 95781, 9702, 714, 36, 1
Offset: 0
Examples
Triangle T(n, k) begins: [0] 1; [1] 0, 1; [2] 0, 1, 1; [3] 0, 4, 3, 1; [4] 0, 27, 19, 6, 1; [5] 0, 256, 175, 55, 10, 1; [6] 0, 3125, 2101, 660, 125, 15, 1; [7] 0, 46656, 31031, 9751, 1890, 245, 21, 1; [8] 0, 823543, 543607, 170898, 33621, 4550, 434, 28, 1; [9] 0, 16777216, 11012415, 3463615, 688506, 95781, 9702, 714, 36, 1;
References
- Louis Comtet, Advanced Combinatorics. Reidel, Dordrecht, 1974, p. 139-140.
Links
- D. H. Lehmer, Numbers Associated with Stirling Numbers and x^x, Rocky Mountain J. Math., 15(2) 1985, pp. 461-475.
- Peter Luschny, The Bell transform
- Wikipedia, Bell polynomials.
Crossrefs
Programs
-
Maple
T := (n, k) -> if n = k then 1 else add((-1)^j*(n-j-1)^(n-1)/(j!*(k-1-j)!), j = 0.. k-1) fi: seq(seq(T(n, k), k = 0..n), n = 0..9); # Alternatively, using the function BellMatrix from A264428: BellMatrix(n -> n^n, 9); # Or by recursion: R := proc(n, k, m) option remember; if k < 0 or n < 0 then 0 elif k = 0 then 1 else m*R(n, k-1, m) + R(n-1, k, m+1) fi end: A039621 := (n, k) -> ifelse(n = 0, 1, R(k-1, n-k, n-k)):
-
Mathematica
Unprotect[Power]; Power[0, 0] = 1; pow[n_] := n^n; R = Range[0, 9]; T[n_, k_] := BellY[n, k, pow[R]]; Table[T[n, k], {n, R}, {k, 0, n}] // Flatten
-
Python
from functools import cache @cache def t(n, k, m): if k < 0 or n < 0: return 0 if k == 0: return n ** k return m * t(n, k - 1, m) + t(n - 1, k, m + 1) def A354794(n, k): return t(k - 1, n - k, n - k) if n != k else 1 for n in range(9): print([A354794(n, k) for k in range(n + 1)])
Formula
T(n, k) = Bell_{n, k}(A000312), where Bell_{n, k} is the partial Bell polynomial evaluated over the powers m^m (with 0^0 = 1). See the Mathematica program.
T(n, k) = Sum_{j=0..k-1} (-1)^j*(n-j-1)^(n - 1)/(j! * (k-1-j)!) for 0 <= k < n and T(n, n) = 1.
T(n, k) = r(k-1, n-k, n-k) for n,k >= 1 and T(0, 0) = 1, where r(n, k, m) = m*r(n, k-1, m) + r(n-1, k, m+1) and r(n, 0, m) = 1. (see Vladimir Kruchinin's formula in A039621).
Sum_{k=1..n} binomial(k + x - 1, k-1)*(k-1)!*T(n, k) = (n + x)^(n - 1) for n >= 1.
Sum_{k=1..n} (-1)^(k+j)*Stirling1(k, j)*T(n, k) = n^(n-j)*binomial(n-1, j-1) for n >= 1, which are, up to sign, the coefficients of the Abel polynomials (A137452).
From Werner Schulte, Jun 14 2022 and Jun 19 2022: (Start)
E.g.f. of column k >= 0: (Sum_{i>0} (i-1)^(i-1) * t^i / i!)^k / k!.
Comments