cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354800 Cardinality of the set of ordered pairs (m(lambda),f(lambda)), where lambda ranges over all partitions of n and m gives the infimum and f gives the sum of the squares of the argument.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 13, 20, 26, 33, 41, 55, 63, 77, 93, 111, 129, 160, 180, 209, 240, 280, 312, 356, 397, 453, 498, 560, 614, 680, 758, 831, 901, 994, 1087, 1179, 1280, 1389, 1495, 1629, 1745, 1868, 2022, 2159, 2296, 2485, 2650, 2809, 2991, 3181, 3377, 3600
Offset: 0

Views

Author

Alois P. Heinz, Jun 06 2022

Keywords

Examples

			a(0) = 1 = |{(infinity,0)}|.
a(1) = 1 = |{(1,1)}|.
a(2) = 2 = |{(1,2), (2,4)}|.
a(3) = 3 = |{(1,3), (1,5), (3,9)}|.
a(4) = 5 = |{(1,4), (1,6), (1,10), (2,8), (4,16)}|.
a(5) = 7 = |{(1,5), (1,7), (1,9), (1,11), (1,17), (2,13), (5,25)}|.
		

Crossrefs

Cf. A069999 (lower bound), A354468 (the same for supremum).

Programs

  • Maple
    a:= n-> nops({map(l-> [min(l), add(i^2, i=l)], combinat[partition](n))[]}):
    seq(a(n), n=0..40);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, {0}, `if`(n x+i^2, b(n-i, i))[]}))
        end:
    a:= n-> add(nops(b(n-i, i)), i=signum(n)..n):
    seq(a(n), n=0..60);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[n < i, {}, Union@ Flatten@ {b[n, i + 1], # + i^2& /@ b[n - i, i]}]];
    a[n_] :=  Sum[Length[b[n - i, i]], {i, Sign[n], n}];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Jul 06 2022, after Alois P. Heinz *)