A354800 Cardinality of the set of ordered pairs (m(lambda),f(lambda)), where lambda ranges over all partitions of n and m gives the infimum and f gives the sum of the squares of the argument.
1, 1, 2, 3, 5, 7, 11, 13, 20, 26, 33, 41, 55, 63, 77, 93, 111, 129, 160, 180, 209, 240, 280, 312, 356, 397, 453, 498, 560, 614, 680, 758, 831, 901, 994, 1087, 1179, 1280, 1389, 1495, 1629, 1745, 1868, 2022, 2159, 2296, 2485, 2650, 2809, 2991, 3181, 3377, 3600
Offset: 0
Keywords
Examples
a(0) = 1 = |{(infinity,0)}|. a(1) = 1 = |{(1,1)}|. a(2) = 2 = |{(1,2), (2,4)}|. a(3) = 3 = |{(1,3), (1,5), (3,9)}|. a(4) = 5 = |{(1,4), (1,6), (1,10), (2,8), (4,16)}|. a(5) = 7 = |{(1,5), (1,7), (1,9), (1,11), (1,17), (2,13), (5,25)}|.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..700
- Wikipedia, Infima and suprema of real numbers
- Wikipedia, Partition (number theory)
Programs
-
Maple
a:= n-> nops({map(l-> [min(l), add(i^2, i=l)], combinat[partition](n))[]}): seq(a(n), n=0..40); # second Maple program: b:= proc(n, i) option remember; `if`(n=0, {0}, `if`(n x+i^2, b(n-i, i))[]})) end: a:= n-> add(nops(b(n-i, i)), i=signum(n)..n): seq(a(n), n=0..60);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, {0}, If[n < i, {}, Union@ Flatten@ {b[n, i + 1], # + i^2& /@ b[n - i, i]}]]; a[n_] := Sum[Length[b[n - i, i]], {i, Sign[n], n}]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Jul 06 2022, after Alois P. Heinz *)