cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A346242 Dirichlet inverse of A324198, where A324198(n) = gcd(n, A276086(n)).

Original entry on oeis.org

1, -1, -3, 0, -1, 5, -1, 0, 6, -3, -1, -2, -1, 1, -9, 0, -1, -16, -1, 4, 3, 1, -1, 0, -24, 1, -12, 0, -1, 43, -1, 0, 3, 1, -5, 14, -1, 1, 3, 0, -1, -11, -1, 0, 54, 1, -1, 0, -6, 32, 3, 0, -1, 44, -3, -6, 3, 1, -1, -50, -1, 1, -24, 0, 1, -5, -1, 0, 3, -15, -1, -4, -1, 1, 96, 0, -5, -5, -1, 0, 24, 1, -1, 8, -3, 1, 3, 0, -1
Offset: 1

Views

Author

Antti Karttunen, Jul 13 2021

Keywords

Crossrefs

Cf. A008966 (parity of terms), A005117 (positions of odd terms), A013929 (of even terms), A045344 (of -1's, at least a subset of them), A354810 (of 0's), A354811 (of 1's), A354812 (of 2's), A354813 (of 3's), A354814 (of 4's), A354822 (of -2's).

Programs

  • PARI
    up_to = 65537;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA324198(n) = { my(m=1, p=2, orgn=n); while(n, m *= (p^min(n%p, valuation(orgn, p))); n = n\p; p = nextprime(1+p)); (m); };
    v346242 = DirInverseCorrect(vector(up_to,n,A324198(n)));
    A346242(n) = v346242[n];

Formula

a(n) = A346243(n) - A324198(n).
From Antti Karttunen, Jun 09 2022: (Start)
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA324198(n/d) * a(d).
For all n >= 1, A000035(a(n)) = A008966(n).
For all n >= 1, a(A045344(n)) = -1.
(End)

A354347 Dirichlet inverse of A345000, where A345000(n) = gcd(A003415(n), A003415(A276086(n))), with A003415 the arithmetic derivative, and A276086 the primorial base exp-function.

Original entry on oeis.org

1, -1, -1, -1, -1, 1, -1, -1, 0, 1, -1, 1, -1, 1, 1, -9, -1, -2, -1, 1, -3, 1, -1, 1, -4, -3, 0, 1, -1, -1, -1, 21, 1, 1, -1, -6, -1, 1, 1, 3, -1, 7, -1, -1, 0, -3, -1, 23, 0, 4, -3, 7, -1, 2, 1, 3, 1, 1, -1, -1, -1, 1, 8, 15, -1, -1, -1, 1, 1, 3, -1, 14, -1, 1, -46, -7, -1, 7, -1, 5, 0, 1, -1, 3, 1, -3, 1, -131
Offset: 1

Views

Author

Antti Karttunen, Jun 07 2022

Keywords

Crossrefs

Cf. A038838 (positions of even terms), A122132 (of odd terms), A353627 (parity of terms), A354815 (positions of 0's), A354816 (of -1's).

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A345000(n) = gcd(A003415(n),A003415(A276086(n)));
    memoA354347 = Map();
    A354347(n) = if(1==n,1,my(v); if(mapisdefined(memoA354347,n,&v), v, v = -sumdiv(n,d,if(dA345000(n/d)*A354347(d),0)); mapput(memoA354347,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA345000(n/d) * a(d).
For all n >= 1, A000035(a(n)) = A353627(n).

A354823 Dirichlet inverse of A351083, where A351083(n) = gcd(n, A327860(n)), and A327860 is the arithmetic derivative of the primorial base exp-function.

Original entry on oeis.org

1, -1, -1, -1, -1, 1, -7, -5, 0, 1, -1, 1, -1, 13, -3, -1, -1, -2, -1, -7, 13, 1, -1, 9, -24, 1, 0, 7, -1, 7, -1, 33, 1, -15, 9, -6, -1, 1, -11, 27, -1, -25, -1, -1, 4, 1, -1, 7, 48, 24, 1, -1, -1, 2, -3, 59, 1, 1, -1, 19, -1, 1, -12, 23, 1, -1, -1, 33, 1, -23, -1, -2, -1, 1, 52, 1, 7, 23, -1, -67, 0, 1, -1, -25
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2022

Keywords

Crossrefs

Cf. A038838 (positions of even terms), A122132 (of odd terms), A353627 (parity of terms).

Programs

  • PARI
    A327860(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= (p^e); s += (e/p); n = n\p; p = nextprime(1+p)); (s*m); };
    A351083(n) = gcd(n, A327860(n));
    memoA354823 = Map();
    A354823(n) = if(1==n,1,my(v); if(mapisdefined(memoA354823,n,&v), v, v = -sumdiv(n,d,if(dA351083(n/d)*A354823(d),0)); mapput(memoA354823,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA351083(n/d) * a(d).

A355692 Dirichlet inverse of A355442, gcd(A003961(n), A276086(n)), where A003961 is fully multiplicative with a(p) = nextprime(p), and A276086 is primorial base exp-function.

Original entry on oeis.org

1, -3, -1, 0, -1, 1, -1, 24, -4, 3, -1, 16, -1, 3, -3, -72, -1, 6, -1, 6, -3, 3, -1, -68, 0, 3, -116, 0, -1, 21, -1, 24, 1, 3, -5, 72, -1, 3, -3, -120, -1, 23, -1, 6, -158, 3, -1, 28, 0, -18, -3, 0, -1, 632, -5, -24, -3, 3, -1, -54, -1, 3, 16, 504, -5, -1, -1, 6, -3, 15, -1, -400, -1, 3, -236, 0, 1, 23, -1, 474, 136
Offset: 1

Views

Author

Antti Karttunen, Jul 18 2022

Keywords

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A355442(n) = gcd(A003961(n), A276086(n));
    memoA355692 = Map();
    A355692(n) = if(1==n,1,my(v); if(mapisdefined(memoA355692,n,&v), v, v = -sumdiv(n,d,if(dA355442(n/d)*A355692(d),0)); mapput(memoA355692,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA355442(n/d) * a(d).
Showing 1-4 of 4 results.