cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A354897 a(n) = n! * Sum_{d|n} d^n / (d! * (n/d)!).

Original entry on oeis.org

1, 5, 28, 353, 3126, 94237, 823544, 72042497, 585825130, 157671732881, 285311670612, 790577855833537, 302875106592254, 5876819345289651137, 55890419425648520176, 73205730667453550166017, 827240261886336764178, 1474631675630757976051079425
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * DivisorSum[n, #^n/(#! * (n/#)!) &]; Array[a, 18] (* Amiram Eldar, Jun 11 2022 *)
  • PARI
    a(n) = n!*sumdiv(n, d, d^n/(d!*(n/d)!));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, (exp((k*x)^k)-1)/k!)))

Formula

E.g.f.: Sum_{k>0} (exp((k * x)^k) - 1)/k!.
If p is prime, a(p) = 1 + p^p.

A354899 a(n) = n! * Sum_{d|n} d^d / (d! * (n/d)!).

Original entry on oeis.org

1, 5, 28, 281, 3126, 48517, 823544, 16995617, 387692650, 10047310481, 285311670612, 8932562801857, 302875106592254, 11119129387084097, 437899615088648176, 18451106376806703617, 827240261886336764178, 39349894934527426209025
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * DivisorSum[n, #^#/(#! * (n/#)!) &]; Array[a, 18] (* Amiram Eldar, Jun 11 2022 *)
  • PARI
    a(n) = n!*sumdiv(n, d, d^d/(d!*(n/d)!));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, k^k*(exp(x^k)-1)/k!)))

Formula

E.g.f.: Sum_{k>0} k^k * (exp(x^k) - 1)/k!.
If p is prime, a(p) = 1 + p^p.
Showing 1-2 of 2 results.