cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A354849 a(n) = (n-1)! * Sum_{d|n} d^(n/d) / (d-1)!.

Original entry on oeis.org

1, 3, 5, 34, 29, 1626, 727, 99128, 584649, 12353050, 3628811, 4648976652, 479001613, 803709466574, 11133394272015, 391883024332816, 20922789888017, 312756670075449618, 6402373705728019, 148614866400768768020, 2663970255433783296021
Offset: 1

Views

Author

Seiichi Manyama, Jun 08 2022

Keywords

Crossrefs

Cf. A087906.

Programs

  • Mathematica
    a[n_] := (n - 1)! * DivisorSum[n, #^(n/#)/(# - 1)! &]; Array[a, 20] (* Amiram Eldar, Jun 08 2022 *)
  • PARI
    a(n) = (n-1)!*sumdiv(n, d, d^(n/d)/(d-1)!);
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, log(1-k*x^k)/k!)))

Formula

E.g.f.: -Sum_{k>0} log(1 - k * x^k)/k!.
If p is prime, a(p) = p + (p-1)!.