A354976 Squarefree tetrahedral numbers which are products of five distinct primes.
7770, 14190, 98770, 121485, 129766, 273819, 383306, 457310, 632710, 735130, 848046, 971970, 1072445, 1456935, 1543465, 2027795, 2135445, 2190670, 2731135, 3136805, 3817670, 4775385, 4869634, 5159805, 5564321, 5989445, 6099006, 6209895, 8579746, 9145270, 9735114, 9886435
Offset: 1
Keywords
Examples
7770 = 35*36*37/6 = 2*3*5*7*37 14190 = 43*44*45/6 = 2*3*5*11*43 98770 = 83*84*85/6 = 2*5*7*17*83 121485 = 89*90*91/6 = 3*5*7*13*89
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
q:= n-> is(map(x-> x[2], ifactors(n)[2])=[1$5]): select(q, [n*(n+1)*(n+2)/6$n=1..500])[]; # Alois P. Heinz, Jun 15 2022
-
Mathematica
Select[Table[n*(n+1)*(n+2)/6, {n, 1, 400}], FactorInteger[#][[;;, 2]] == {1, 1, 1, 1, 1} &] (* Amiram Eldar, Jun 15 2022 *) Select[Binomial[Range[500]+2,3],PrimeNu[#]==PrimeOmega[#]==5&] (* Harvey P. Dale, Jul 05 2025 *)
Extensions
Definition clarified by Harvey P. Dale, Jul 05 2025
Comments