cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A354985 a(n) = gcd(A047994(n), A344005(n)).

Original entry on oeis.org

1, 1, 2, 3, 4, 2, 6, 7, 8, 4, 10, 3, 12, 6, 1, 15, 16, 8, 18, 4, 6, 10, 22, 2, 24, 12, 26, 1, 28, 1, 30, 31, 1, 16, 2, 8, 36, 18, 12, 1, 40, 6, 42, 1, 1, 22, 46, 15, 48, 24, 1, 12, 52, 26, 10, 7, 18, 28, 58, 3, 60, 30, 3, 63, 1, 1, 66, 16, 1, 2, 70, 8, 72, 36, 24, 1, 3, 12, 78, 15, 80, 40, 82, 4, 2, 42, 1, 2, 88
Offset: 1

Views

Author

Antti Karttunen, Jun 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{m = 1}, While[!Divisible[m*(m + 1), n], m++]; m]; f[p_, e_] := p^e - 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; uphi[1] = 1; a[n_] := GCD[uphi[n], s[n]]; Array[a, 100] (* Amiram Eldar, Jun 16 2022 *)
  • PARI
    A047994(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^f[2, i])-1); };
    A344005(n) = for(m=1, oo, if((m*(m+1))%n==0, return(m))); \\ From A344005
    A354985(n) = gcd(A047994(n), A344005(n));

Formula

a(n) = gcd(A047994(n), A344005(n)).
a(n) = gcd(A047994(n), A346607(n)) = gcd(A344005(n), A346607(n)).

A354986 a(n) = A047994(n) / gcd(A047994(n), A344005(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 8, 1, 1, 1, 1, 3, 2, 1, 1, 7, 1, 1, 1, 18, 1, 8, 1, 1, 20, 1, 12, 3, 1, 1, 2, 28, 1, 2, 1, 30, 32, 1, 1, 2, 1, 1, 32, 3, 1, 1, 4, 6, 2, 1, 1, 8, 1, 1, 16, 1, 48, 20, 1, 3, 44, 12, 1, 7, 1, 1, 2, 54, 20, 2, 1, 4, 1, 1, 1, 9, 32, 1, 56, 35, 1, 32, 72, 66, 2, 1, 72, 31, 1, 1, 20
Offset: 1

Views

Author

Antti Karttunen, Jun 16 2022

Keywords

Comments

Numerator of fraction A047994(n) / A344005(n).

Crossrefs

Cf. A047994, A344005, A346607, A346608 (positions of terms > 1), A354928 (positions of 1's), A354985, A354987 (denominators).

Programs

  • Mathematica
    s[n_] := Module[{m = 1}, While[!Divisible[m*(m + 1), n], m++]; m]; f[p_, e_] := p^e - 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; uphi[1] = 1; a[n_] := Numerator[uphi[n]/s[n]]; Array[a, 100] (* Amiram Eldar, Jun 16 2022 *)
  • PARI
    A047994(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^f[2, i])-1); };
    A344005(n) = for(m=1, oo, if((m*(m+1))%n==0, return(m))); \\ From A344005
    A354986(n) = { my(u=A047994(n)); (u/gcd(u, A344005(n))); };

Formula

a(n) = A047994(n) / A354985(n) = A047994(n) / gcd(A047994(n), A344005(n)).
Showing 1-2 of 2 results.