A355009 Primes in A354975.
2, 47, 173, 317, 409, 967, 3877, 6173, 6449, 14401, 16477, 18257, 28183, 30119, 73561, 76607, 86579, 90227, 92867, 97987, 110777, 112663, 114749, 117671, 121553, 130069, 136033, 141403, 144671, 190891, 205129, 207301, 208283, 216481, 221677, 229199, 235337, 231223, 261347, 265123, 281191, 311473
Offset: 1
Keywords
Examples
a(3) = A354975(15) = 173 is the third member of A354975 that is prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
Programs
-
Maple
f:= proc(n) local k; add(ithprime(n+k) mod ithprime(k), k=1..n) end proc: select(isprime, map(f, [$1..1000]);
-
Mathematica
Block[{nn = 450, a, p}, Do[Set[p[i], Prime[i]], {i, 2 nn}]; Reap[Do[If[PrimeQ[#], Sow[#]] &@ Sum[Mod[p[i + j], p[j]], {j, i}], {i, nn}]][[-1, -1]]] (* Michael De Vlieger, Jun 19 2022 *)
-
PARI
lista(nn) = my(list=List()); for (n=1, nn, if (isprime(p=sum(i=1, n, prime(i+n) % prime(i))), listput(list, p));); Vec(list); \\ Michel Marcus, Jun 19 2022
-
Python
from itertools import count, islice from sympy import prime, isprime def A355009_gen(): # generator of terms return filter(isprime,(sum(prime(i+n) % prime(i) for i in range(1,n+1)) for n in count(1))) A355009_list = list(islice(A355009_gen(),5)) # Chai Wah Wu, Jun 20 2022
Comments