A354972 Numbers k such that A354975(k) is prime.
2, 9, 15, 19, 21, 32, 63, 75, 77, 108, 115, 120, 147, 151, 229, 235, 243, 248, 252, 258, 279, 283, 285, 288, 290, 299, 303, 309, 314, 352, 360, 361, 362, 377, 382, 387, 393, 398, 413, 418, 430, 447, 457, 462, 465, 467, 468, 470, 475, 488, 510, 518, 551, 560, 569, 604, 625, 643, 679, 732, 735, 740
Offset: 1
Keywords
Examples
a(1) = 2 is a term because A354975(2) = (5 mod 2) + (7 mod 3) = 2 is prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
Programs
-
Maple
filter:= proc(n) local k; isprime(add(ithprime(n+k) mod ithprime(k), k=1..n)) end proc: select(filter, [$1..1000]);
-
PARI
isok(k) = isprime(sum(i=1, k, prime(i+k) % prime(i))); \\ Michel Marcus, Jun 19 2022
-
Python
from itertools import count, islice from sympy import prime, isprime def A354972_gen(): # generator of terms for n in count(1): if isprime(sum(prime(i+n) % prime(i) for i in range(1,n+1))): yield n A354972_list = list(islice(A354972_gen(),10)) # Chai Wah Wu, Jun 20 2022
Comments