A355020 a(n) = (-1)^n * A000045(n) + 1.
1, 0, 2, -1, 4, -4, 9, -12, 22, -33, 56, -88, 145, -232, 378, -609, 988, -1596, 2585, -4180, 6766, -10945, 17712, -28656, 46369, -75024, 121394, -196417, 317812, -514228, 832041, -1346268, 2178310, -3524577, 5702888, -9227464, 14930353, -24157816, 39088170
Offset: 0
Examples
a(0) = 1; a(1) = 1 - 1 = 0; a(2) = 1 - 1 + 2 = 2; a(3) = 1 - 1 + 2 - 3 = -1.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,2,-1).
Programs
-
Magma
[1 - Fibonacci(-n): n in [0..50]]; // G. C. Greubel, Mar 17 2024
-
Mathematica
f[n_] := Fibonacci[n]; g[n_] := LucasL[n]; Table[(-1)^n f[n] + 1, {n, 0, 40}] (* this sequence *) Table[(-1)^n g[n] - 1, {n, 0, 40}] (* A355021 *) 1 - Fibonacci[-Range[0, 50]] (* G. C. Greubel, Mar 17 2024 *)
-
PARI
a(n) = (-1)^n*fibonacci(n) + 1; \\ Michel Marcus, Jun 24 2022
-
SageMath
[1 - fibonacci(-n) for n in range(51)] # G. C. Greubel, Mar 17 2024
Formula
a(n) = 2*a(n-2) - a(n-3) for n > 2.
G.f.: 1/(1 - 2*x^2 + x^3).
Comments