A355021 a(n) = (-1)^n * A000032(n) - 1.
1, -2, 2, -5, 6, -12, 17, -30, 46, -77, 122, -200, 321, -522, 842, -1365, 2206, -3572, 5777, -9350, 15126, -24477, 39602, -64080, 103681, -167762, 271442, -439205, 710646, -1149852, 1860497, -3010350, 4870846, -7881197, 12752042, -20633240, 33385281
Offset: 0
Examples
a(0) = 1; a(1) = 1 - 3 = -2; a(2) = 1 - 3 + 4 = 2; a(3) = 1 - 3 + 4 - 7 = -5.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,2,-1).
Programs
-
Magma
[Lucas(-n) -1: n in [0..50]]; // G. C. Greubel, Mar 17 2024
-
Mathematica
f[n_] := Fibonacci[n]; g[n_] := LucasL[n]; f1 = Table[(-1)^n f[n] + 1, {n, 0, 40}] (* A355020 *) g1 = Table[(-1)^n g[n] - 1, {n, 0, 40}] (* this sequence *) LucasL[-Range[0, 50]] - 1 (* G. C. Greubel, Mar 17 2024 *) LinearRecurrence[{0,2,-1},{1,-2,2},40] (* Harvey P. Dale, Sep 06 2024 *)
-
SageMath
[lucas_number2(-n,1,-1) -1 for n in range(51)] # G. C. Greubel, Mar 17 2024
Formula
a(n) = 2*a(n-2) - a(n-3) for n >= 3. [Corrected by Georg Fischer, Sep 30 2022]
G.f.: (1 - 2*x)/(1 - 2*x^2 + x^3).
Comments