cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355021 a(n) = (-1)^n * A000032(n) - 1.

Original entry on oeis.org

1, -2, 2, -5, 6, -12, 17, -30, 46, -77, 122, -200, 321, -522, 842, -1365, 2206, -3572, 5777, -9350, 15126, -24477, 39602, -64080, 103681, -167762, 271442, -439205, 710646, -1149852, 1860497, -3010350, 4870846, -7881197, 12752042, -20633240, 33385281
Offset: 0

Views

Author

Clark Kimberling, Jun 21 2022

Keywords

Comments

There are the partial sums of L(1) - L(2) + L(3) - L(4) + L(5) - ... .
Closely related (Fibonacci, A000045) partial sums of F(1) - F(2) + F(3) - F(4) + F(5) - ... are given by A355020.
Apart from signs, same as A098600 and A181716.

Examples

			a(0) = 1;
a(1) = 1 - 3 = -2;
a(2) = 1 - 3 + 4 = 2;
a(3) = 1 - 3 + 4 - 7 = -5.
		

Crossrefs

Programs

  • Magma
    [Lucas(-n) -1: n in [0..50]]; // G. C. Greubel, Mar 17 2024
    
  • Mathematica
    f[n_] := Fibonacci[n]; g[n_] := LucasL[n];
    f1 = Table[(-1)^n f[n] + 1, {n, 0, 40}]   (* A355020 *)
    g1 = Table[(-1)^n g[n] - 1, {n, 0, 40}]   (* this sequence *)
    LucasL[-Range[0, 50]] - 1 (* G. C. Greubel, Mar 17 2024 *)
    LinearRecurrence[{0,2,-1},{1,-2,2},40] (* Harvey P. Dale, Sep 06 2024 *)
  • SageMath
    [lucas_number2(-n,1,-1) -1 for n in range(51)] # G. C. Greubel, Mar 17 2024

Formula

a(n) = 2*a(n-2) - a(n-3) for n >= 3. [Corrected by Georg Fischer, Sep 30 2022]
G.f.: (1 - 2*x)/(1 - 2*x^2 + x^3).