cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A355070 G.f.: Sum_{n>=0} a(n)*x^n/(n!*3^(n*(n-1)/2)) = log( Sum_{n>=0} x^n/(n!*3^(n*(n-1)/2)) ).

Original entry on oeis.org

0, 1, -2, 28, -1808, 469072, -456745472, 1601325615808, -19650153075181568, 826737899840505194752, -117393483573257494026125312, 55564698792825562646890851908608, -86789641569440259960965030826164092928
Offset: 0

Views

Author

Seiichi Manyama, Jun 18 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*3^(n*(n-1)/2)*polcoef(log(sum(k=0, n, x^k/(k!*3^(k*(k-1)/2)))+x*O(x^n)), n);
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=0; for(i=1, n, v[i+1]=1-sum(j=1, i-1, 3^(j*(i-j))*binomial(i-1, j)*v[i-j+1])); v;

Formula

a(0) = 0; a(n) = 1 - Sum_{k=1..n-1} 3^(k*(n-k)) * binomial(n-1,k) * a(n-k).

A355074 G.f.: Sum_{n>=0} a(n)*x^n/(n!*4^(n*(n-1)/2)) = exp( Sum_{n>=1} x^n/(n!*4^(n*(n-1)/2)) ).

Original entry on oeis.org

1, 1, 5, 113, 11265, 4859137, 8966576129, 70171067707393, 2313986342570295297, 319893682564775147012097, 184627527352223449064321581057, 443344010564094761887045848673550337, 4416539344305075410912848824562640662560769
Offset: 0

Views

Author

Seiichi Manyama, Jun 18 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*4^(n*(n-1)/2)*polcoef(exp(sum(k=1, n, x^k/(k!*4^(k*(k-1)/2)))+x*O(x^n)), n);
    
  • PARI
    T(n, k) = if(k==1, 1, sum(j=1, n-1, 4^(j*(n-j))*binomial(n-1, j)*T(j, k-1)));
    a(n) = if(n==0, 1, sum(k=1, n, T(n, k)));
Showing 1-2 of 2 results.