cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A355086 E.g.f. A(x) satisfies A(x) = 1 - log(1-x) * A(2*x).

Original entry on oeis.org

1, 1, 5, 68, 2318, 191364, 37322176, 16851654336, 17323677619888, 39991811695203552, 204958165376127918144, 2309776412016044230960128, 56778926016923229432156258048, 3023733345610004146919028796718592
Offset: 0

Views

Author

Seiichi Manyama, Jun 18 2022

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, 2^(i-j)*(j-1)!*binomial(i, j)*v[i-j+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=1..n} 2^(n-k) * (k-1)! * binomial(n,k) * a(n-k).

A355085 E.g.f. A(x) satisfies A(x) = 1 + log(1+x) * A(3*x).

Original entry on oeis.org

1, 1, 5, 128, 13572, 5462934, 7948602294, 40533916402440, 709019302729063320, 41863690463023189162224, 8239820880700969013925719856, 5352039696398504114334881521575792, 11377141201027327036487229661596883688304
Offset: 0

Views

Author

Seiichi Manyama, Jun 18 2022

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (-1)^(j-1)*3^(i-j)*(j-1)!*binomial(i, j)*v[i-j+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k-1) * 3^(n-k) * (k-1)! * binomial(n,k) * a(n-k).

A355088 E.g.f. A(x) satisfies A(x) = 1 + (exp(x) - 1) * A(3*x).

Original entry on oeis.org

1, 1, 7, 199, 21883, 8916991, 13027669147, 66525761289919, 1164200761777844203, 68750129286493392353311, 13532431689375421261723713787, 8789916574829303798007959322784639, 18685340957126032386127459367999667264523
Offset: 0

Views

Author

Seiichi Manyama, Jun 18 2022

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, 3^j*binomial(i, j)*v[j+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..n-1} 3^k * binomial(n,k) * a(k).

A367829 E.g.f. A(x) satisfies A(x) = (1 - log(1 - x) * A(3*x)) / (1 - x).

Original entry on oeis.org

1, 2, 17, 530, 60332, 24882484, 36501847110, 186651759218364, 3267898148335418280, 193010228785740170125728, 37993098362777240856612204096, 24678625994736515097158433120107040, 52461378922253347510159057679901573120528
Offset: 0

Views

Author

Seiichi Manyama, Dec 02 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i*v[i]+sum(j=1, i, 3^(i-j)*(j-1)!*binomial(i, j)*v[i-j+1])); v;

Formula

a(0) = 1; a(n) = n * a(n-1) + Sum_{k=1..n} 3^(n-k) * (k-1)! * binomial(n,k) * a(n-k).
Showing 1-4 of 4 results.