cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A355131 E.g.f. A(x) satisfies A(x) = 1 + 2 * (exp(x) - 1) * A(2 * (exp(x) - 1)).

Original entry on oeis.org

1, 2, 18, 482, 33554, 5688162, 2266828306, 2077710037986, 4312607047919378, 20026622857699101794, 205970083615742633015314, 4651396041100180736449396962, 228932014511191529094605862938898, 24398187888144654481778017293891600738
Offset: 0

Views

Author

Seiichi Manyama, Jun 20 2022

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, j*2^j*stirling(i, j, 2)*v[j])); v;

Formula

E.g.f. A(x) satisfies: A(log(1+x)) = 1 + 2*x*A(2*x).
a(0) = 1; a(n) = Sum_{k=1..n} k * 2^k * Stirling2(n,k) * a(k-1).

A355216 E.g.f. A(x) satisfies A'(x) = 1 + A(2 * (exp(x) - 1))/2.

Original entry on oeis.org

1, 1, 3, 19, 239, 5675, 249983, 20404811, 3112376543, 898693573515, 498042936169343, 536255530818837835, 1132713758105613132319, 4726517343060928547800331, 39145565125819857567685815231, 645447728030234045716450604490955
Offset: 1

Views

Author

Seiichi Manyama, Jun 24 2022

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n)); v[1]=1; for(i=1, n-1, v[i+1]=sum(j=1, i, 2^(j-1)*stirling(i, j, 2)*v[j])); v;

Formula

a(1) = 1; a(n+1) = Sum_{k=1..n} 2^(k-1) * Stirling2(n,k) * a(k).
Showing 1-2 of 2 results.