cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355144 Number T(n,k) of partitions of [n] having exactly k blocks of size at least three; triangle T(n,k), n>=0, 0<=k<=floor(n/3), read by rows.

Original entry on oeis.org

1, 1, 2, 4, 1, 10, 5, 26, 26, 76, 117, 10, 232, 540, 105, 764, 2445, 931, 2620, 11338, 6909, 280, 9496, 53033, 48546, 4900, 35696, 253826, 324753, 64295, 140152, 1235115, 2131855, 691075, 15400, 568504, 6142878, 13792779, 6739876, 400400, 2390480, 31126539, 88890880, 61274213, 7217210
Offset: 0

Views

Author

Alois P. Heinz, Jun 20 2022

Keywords

Examples

			T(4,1) = 5: 1234, 123|4, 124|3, 134|2, 1|234.
T(6,2) = 10: 123|456, 124|356, 125|346, 126|345, 134|256, 135|246, 136|245, 145|236, 146|235, 156|234.
Triangle T(n,k) begins:
       1;
       1;
       2;
       4,       1;
      10,       5;
      26,      26;
      76,     117,      10;
     232,     540,     105;
     764,    2445,     931;
    2620,   11338,    6909,    280;
    9496,   53033,   48546,   4900;
   35696,  253826,  324753,  64295;
  140152, 1235115, 2131855, 691075, 15400;
  ...
		

Crossrefs

Column k=0 gives A000085.
Row sums give A000110.
T(3n,n) gives A025035.

Programs

  • Maple
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(
         `if`(i>2, x, 1)*binomial(n-1, i-1)*b(n-i), i=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
    seq(T(n), n=0..14);  # Alois P. Heinz, Jun 20 2022
  • Mathematica
    b[n_] := b[n] = Expand[If[n == 0, 1, Sum[If[i > 2, x, 1]*
         Binomial[n - 1, i - 1]*b[n - i], {i, 1, n}]]];
    T[n_] := CoefficientList[b[n], x];
    Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jun 25 2022, after Alois P. Heinz *)

Formula

Sum_{k=1..n} k * T(n,k) = A288785(n).