A355144 Number T(n,k) of partitions of [n] having exactly k blocks of size at least three; triangle T(n,k), n>=0, 0<=k<=floor(n/3), read by rows.
1, 1, 2, 4, 1, 10, 5, 26, 26, 76, 117, 10, 232, 540, 105, 764, 2445, 931, 2620, 11338, 6909, 280, 9496, 53033, 48546, 4900, 35696, 253826, 324753, 64295, 140152, 1235115, 2131855, 691075, 15400, 568504, 6142878, 13792779, 6739876, 400400, 2390480, 31126539, 88890880, 61274213, 7217210
Offset: 0
Examples
T(4,1) = 5: 1234, 123|4, 124|3, 134|2, 1|234. T(6,2) = 10: 123|456, 124|356, 125|346, 126|345, 134|256, 135|246, 136|245, 145|236, 146|235, 156|234. Triangle T(n,k) begins: 1; 1; 2; 4, 1; 10, 5; 26, 26; 76, 117, 10; 232, 540, 105; 764, 2445, 931; 2620, 11338, 6909, 280; 9496, 53033, 48546, 4900; 35696, 253826, 324753, 64295; 140152, 1235115, 2131855, 691075, 15400; ...
Links
- Alois P. Heinz, Rows n = 0..250, flattened
- Wikipedia, Partition of a set
Crossrefs
Programs
-
Maple
b:= proc(n) option remember; expand(`if`(n=0, 1, add( `if`(i>2, x, 1)*binomial(n-1, i-1)*b(n-i), i=1..n))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)): seq(T(n), n=0..14); # Alois P. Heinz, Jun 20 2022
-
Mathematica
b[n_] := b[n] = Expand[If[n == 0, 1, Sum[If[i > 2, x, 1]* Binomial[n - 1, i - 1]*b[n - i], {i, 1, n}]]]; T[n_] := CoefficientList[b[n], x]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jun 25 2022, after Alois P. Heinz *)
Formula
Sum_{k=1..n} k * T(n,k) = A288785(n).