A355158 Number of partitions of n that contain more nonprime parts than prime parts.
0, 1, 1, 1, 3, 4, 5, 8, 12, 16, 24, 29, 42, 57, 74, 97, 132, 165, 217, 279, 355, 453, 576, 717, 908, 1135, 1408, 1751, 2169, 2664, 3283, 4022, 4909, 5990, 7282, 8814, 10681, 12885, 15506, 18643, 22362, 26739, 31970, 38100, 45340, 53878, 63908, 75639, 89476, 105580, 124445
Offset: 0
Keywords
Examples
For n = 8 the partitions of 8 that contain more nonprime parts than prime parts are [8], [4, 4], [4, 3, 1], [6, 1, 1], [4, 2, 1, 1], [5, 1, 1, 1], [3, 2, 1, 1, 1], [4, 1, 1, 1, 1], [2, 2, 1, 1, 1, 1], [3, 1, 1, 1, 1, 1], [2, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1]. There are 12 of these partitions so a(8) = 12.
Programs
-
PARI
a(n) = my(nb=0); forpart(p=n, if (#select(x->!isprime(x), Vec(p)) > #p/2, nb++)); nb; \\ Michel Marcus, Jun 25 2022
-
Python
from sympy import isprime from sympy.utilities.iterables import partitions def c(p): return 2*sum(p[i] for i in p if not isprime(i)) > sum(p.values()) def a(n): return sum(1 for p in partitions(n) if c(p)) print([a(n) for n in range(51)]) # Michael S. Branicky, Jun 28 2022
Extensions
More terms from Michel Marcus, Jun 25 2022