A355306 Number of partitions of n in which the number of prime parts is not equal to the number of nonprime parts.
0, 1, 2, 2, 4, 7, 8, 13, 19, 25, 38, 48, 65, 91, 120, 153, 209, 264, 343, 443, 563, 713, 912, 1133, 1428, 1789, 2217, 2746, 3406, 4178, 5139, 6296, 7670, 9344, 11360, 13732, 16612, 20038, 24078, 28915, 34660, 41402, 49439, 58887, 69983, 83088, 98476, 116436, 137589, 162244, 191018
Offset: 0
Keywords
Examples
For n = 6 the partitions of 6 in which the number of prime parts is not equal to the number of nonprime parts are [6], [3, 3], [2, 2, 2], [3, 2, 1], [4, 1, 1], [3, 1, 1, 1], [2, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], there are eight of these partitions so a(6) = 8.
Programs
-
Mathematica
Array[Count[IntegerPartitions[#], ?(#1 - #2 != #2 & @@ {Length[#], Count[#, ?PrimeQ]} &)] &, 51, 0] (* Michael De Vlieger, Jul 15 2022 *)
-
PARI
a(n) = my(nb=0); forpart(p=n, if (#select(x->!isprime(x), Vec(p)) != #p/2, nb++)); nb; \\ Michel Marcus, Jun 30 2022
-
Python
from sympy import isprime from sympy.utilities.iterables import partitions def c(p): return 2*sum(p[i] for i in p if isprime(i)) != sum(p.values()) def a(n): return sum(1 for p in partitions(n) if c(p)) print([a(n) for n in range(51)]) # Michael S. Branicky, Jun 28 2022