cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A155515 Number of partitions of n into as many primes as nonprimes.

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 3, 2, 3, 5, 4, 8, 12, 10, 15, 23, 22, 33, 42, 47, 64, 79, 90, 122, 147, 169, 219, 264, 312, 387, 465, 546, 679, 799, 950, 1151, 1365, 1599, 1937, 2270, 2678, 3181, 3735, 4374, 5192, 6046, 7082, 8318, 9684, 11281, 13208, 15313, 17798, 20702, 23951
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 23 2009

Keywords

Examples

			a(9) = #{6+3, 5+4, 5+2+1+1, 4+2+2+1, 2+2+2+1+1+1} = 5;
a(10) = #{8+2, 5+3+1+1, 4+3+2+1, 3+2+2+1+1+1} = 4.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) local m; m:= n- `if`(t>0, t, -2*t); if m<0 then 0 elif n=0 then 1 elif i<3 then `if`(irem(m,3)=0, 1, 0) else b(n, i, t):= b(n-i, i, t+ `if`(isprime(i), 1, -1)) +b(n, i-1, t) fi end: a:= n-> b(n, n, 0): seq(a(n), n=0..60);  # Alois P. Heinz, Apr 30 2009
  • Mathematica
    pnpQ[n_]:=Count[n,?PrimeQ]==Length[n]/2; Table[Count[ IntegerPartitions[ n], ?pnpQ],{n,60}] (* Harvey P. Dale, Feb 02 2014 *)
    b[n_, i_, t_] := b[n, i, t] = Module[{m}, m = n - If[t > 0, t, -2t]; Which[m < 0, 0, n == 0, 1, i < 3, If[Mod[m, 3] == 0, 1, 0], True, b[n, i, t] = b[n-i, i, t + If[PrimeQ[i], 1, -1]] + b[n, i-1, t]]];
    a[n_] := b[n, n, 0];
    a /@ Range[0, 60] (* Jean-François Alcover, May 30 2021, after Alois P. Heinz *)
  • PARI
    parts(n)={1/(prod(k=1, n, 1 - if(isprime(k), y, 1/y)*x^k + O(x*x^n)))}
    {my(n=60); apply(p->polcoeff(p,0), Vec(parts(n)))} \\ Andrew Howroyd, Dec 29 2017
    
  • Python
    from sympy import isprime
    from sympy.utilities.iterables import partitions
    def c(p): return 2*sum(p[i] for i in p if isprime(i)) == sum(p.values())
    def a(n): return sum(1 for p in partitions(n) if c(p))
    print([a(n) for n in range(55)]) # Michael S. Branicky, Jun 30 2022

Formula

a(n) = A000041(n) - A355306(n). - Omar E. Pol, Jun 30 2022

A355158 Number of partitions of n that contain more nonprime parts than prime parts.

Original entry on oeis.org

0, 1, 1, 1, 3, 4, 5, 8, 12, 16, 24, 29, 42, 57, 74, 97, 132, 165, 217, 279, 355, 453, 576, 717, 908, 1135, 1408, 1751, 2169, 2664, 3283, 4022, 4909, 5990, 7282, 8814, 10681, 12885, 15506, 18643, 22362, 26739, 31970, 38100, 45340, 53878, 63908, 75639, 89476, 105580, 124445
Offset: 0

Views

Author

Omar E. Pol, Jun 24 2022

Keywords

Examples

			For n = 8 the partitions of 8 that contain more nonprime parts than prime parts are [8], [4, 4], [4, 3, 1], [6, 1, 1], [4, 2, 1, 1], [5, 1, 1, 1], [3, 2, 1, 1, 1], [4, 1, 1, 1, 1], [2, 2, 1, 1, 1, 1], [3, 1, 1, 1, 1, 1], [2, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1]. There are 12 of these partitions so a(8) = 12.
		

Crossrefs

Programs

  • PARI
    a(n) = my(nb=0); forpart(p=n, if (#select(x->!isprime(x), Vec(p)) > #p/2, nb++)); nb; \\ Michel Marcus, Jun 25 2022
    
  • Python
    from sympy import isprime
    from sympy.utilities.iterables import partitions
    def c(p): return 2*sum(p[i] for i in p if not isprime(i)) > sum(p.values())
    def a(n): return sum(1 for p in partitions(n) if c(p))
    print([a(n) for n in range(51)]) # Michael S. Branicky, Jun 28 2022

Formula

a(n) = A000041(n) - A155515(n) - A355225(n).
a(n) = A355306(n) - A355225(n).

Extensions

More terms from Michel Marcus, Jun 25 2022

A355225 Number of partitions of n that contain more prime parts than nonprime parts.

Original entry on oeis.org

0, 0, 1, 1, 1, 3, 3, 5, 7, 9, 14, 19, 23, 34, 46, 56, 77, 99, 126, 164, 208, 260, 336, 416, 520, 654, 809, 995, 1237, 1514, 1856, 2274, 2761, 3354, 4078, 4918, 5931, 7153, 8572, 10272, 12298, 14663, 17469, 20787, 24643, 29210, 34568, 40797, 48113, 56664, 66573
Offset: 0

Views

Author

Omar E. Pol, Jun 24 2022

Keywords

Examples

			For n = 8 the partitions of 8 that contain more prime parts than nonprime parts are [5, 3], [3, 3, 2], [4, 2, 2], [2, 2, 2, 2], [5, 2, 1], [3, 2, 2, 1], [2, 2, 2, 1, 1]. There are seven of these partitions so a(8) = 7.
		

Crossrefs

Programs

  • PARI
    a(n) = my(nb=0); forpart(p=n, if (#select(isprime, Vec(p)) > #p/2, nb++)); nb; \\ Michel Marcus, Jun 25 2022
    
  • Python
    from sympy import isprime
    from sympy.utilities.iterables import partitions
    def c(p): return 2*sum(p[i] for i in p if isprime(i)) > sum(p.values())
    def a(n): return sum(1 for p in partitions(n) if c(p))
    print([a(n) for n in range(51)]) # Michael S. Branicky, Jun 28 2022

Formula

a(n) = A000041(n) - A155515(n) - A355158(n).
a(n) = A355306(n) - A355158(n).

Extensions

More terms from Alois P. Heinz, Jun 24 2022
Showing 1-3 of 3 results.