cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355160 Numbers k such that (fractional part of k^(3/2)) > 1/2.

Original entry on oeis.org

2, 6, 7, 8, 10, 12, 13, 19, 24, 26, 31, 33, 39, 40, 41, 43, 44, 45, 46, 48, 50, 52, 53, 54, 55, 58, 60, 68, 70, 72, 73, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 88, 89, 90, 93, 95, 96, 104, 105, 107, 109, 110, 117, 118, 120, 122, 124, 125, 132, 133, 135, 137
Offset: 1

Views

Author

Clark Kimberling, Jun 23 2022

Keywords

Comments

For each positive integer K there is a greatest integer h such that h/K < sqrt(K); a(n) is the n-th number h such that (h+1)/K is closer to sqrt(K) than h/K is.

Crossrefs

Cf. A000093, A355159 (complement).

Programs

  • Mathematica
    Select[Range[300], N[FractionalPart[#^(3/2)]] < 1/2 &]  (* A355159 *)
    Select[Range[300], N[FractionalPart[#^(3/2)]] > 1/2 &]  (* A355160 *)
  • PARI
    isok(k) = frac(k^(3/2)) > 1/2; \\ Michel Marcus, Jul 11 2022
    
  • Python
    from math import isqrt
    from itertools import count, islice
    def A355160_gen(startvalue=0): # generator of terms >= startvalue
        return filter(lambda n:int(((r:=n**3)-(m:=isqrt(r))*(m+1))<<2>1),count(max(startvalue,0)))
    A355160_list = list(islice(A355160_gen(),30)) # Chai Wah Wu, Aug 03 2022