A367983 Expansion of e.g.f. exp(-3*x) / (2 - exp(4*x)).
1, 1, 33, 481, 11457, 329281, 11405793, 460726561, 21270068097, 1104703800961, 63750028379553, 4046761389279841, 280235644230863937, 21023317859012763841, 1698493239420829750113, 147024466409751282556321, 13575133989036437786590977, 1331764937006253524751217921
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..345
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(-3*x)/(2-Exp(4*x)) ))); // G. C. Greubel, Jun 11 2024 -
Mathematica
nmax = 17; CoefficientList[Series[Exp[-3 x]/(2 - Exp[4 x]), {x, 0, nmax}], x] Range[0, nmax]! a[n_] := a[n] = (-3)^n + Sum[Binomial[n, k] 4^k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 17}]
-
SageMath
def A367983_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( exp(-3*x)/(2-exp(4*x)) ).egf_to_ogf().list() A367983_list(40) # G. C. Greubel, Jun 11 2024
Formula
a(n) = Sum_{k>=0} (4*k-3)^n / 2^(k+1).
a(n) = (-3)^n + Sum_{k=1..n} binomial(n,k) * 4^k * a(n-k).
a(n) = Sum_{k=0..n} binomial(n,k) * (-3)^(n-k) * 4^k * A000670(k).