A355225 Number of partitions of n that contain more prime parts than nonprime parts.
0, 0, 1, 1, 1, 3, 3, 5, 7, 9, 14, 19, 23, 34, 46, 56, 77, 99, 126, 164, 208, 260, 336, 416, 520, 654, 809, 995, 1237, 1514, 1856, 2274, 2761, 3354, 4078, 4918, 5931, 7153, 8572, 10272, 12298, 14663, 17469, 20787, 24643, 29210, 34568, 40797, 48113, 56664, 66573
Offset: 0
Keywords
Examples
For n = 8 the partitions of 8 that contain more prime parts than nonprime parts are [5, 3], [3, 3, 2], [4, 2, 2], [2, 2, 2, 2], [5, 2, 1], [3, 2, 2, 1], [2, 2, 2, 1, 1]. There are seven of these partitions so a(8) = 7.
Crossrefs
Programs
-
PARI
a(n) = my(nb=0); forpart(p=n, if (#select(isprime, Vec(p)) > #p/2, nb++)); nb; \\ Michel Marcus, Jun 25 2022
-
Python
from sympy import isprime from sympy.utilities.iterables import partitions def c(p): return 2*sum(p[i] for i in p if isprime(i)) > sum(p.values()) def a(n): return sum(1 for p in partitions(n) if c(p)) print([a(n) for n in range(51)]) # Michael S. Branicky, Jun 28 2022
Extensions
More terms from Alois P. Heinz, Jun 24 2022