A355230
E.g.f. A(x) satisfies A'(x) = 1 - log(1-x) * A(2*x).
Original entry on oeis.org
0, 1, 0, 4, 6, 144, 860, 30656, 497168, 33543808, 1300171872, 178516634624, 15640422963968, 4483114311886336, 862178272953520640, 520264199498699214848, 215806526739662643193856, 274505260166616222726586368
Offset: 0
-
a_vector(n) = my(v=vector(n)); v[1]=1; for(i=1, n-1, v[i+1]=sum(j=1, i-1, 2^(i-j)*(j-1)!*binomial(i, j)*v[i-j])); concat(0, v);
A355231
E.g.f. A(x) satisfies A'(x) = 1 - 2 * log(1-x) * A(x).
Original entry on oeis.org
0, 1, 0, 4, 6, 48, 200, 1364, 9016, 71088, 607920, 5772528, 59790720, 673839456, 8210152704, 107668087104, 1513106471040, 22700196933120, 362277092798208, 6130771723664640, 109694104262443008, 2069581743476587008, 41071931895114372096, 855436794313229319168
Offset: 0
-
nmax = 25; CoefficientList[Series[(1-x)^(2 - 2*x)/E^(2 - 2*x) * Integrate[E^(2 - 2*x) / (1-x)^(2 - 2*x), x], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 25 2022 *)
-
a_vector(n) = my(v=vector(n)); v[1]=1; for(i=1, n-1, v[i+1]=2*sum(j=1, i-1, (j-1)!*binomial(i, j)*v[i-j])); concat(0, v);
Showing 1-2 of 2 results.