cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355257 Array read by ascending antidiagonals. A(n, k) = k! * [x^k] log((1 - x) / (1 - 2*x)) / (1 - x)^n, for 0 <= k <= n.

Original entry on oeis.org

0, 0, 1, 0, 1, 3, 0, 1, 5, 14, 0, 1, 7, 29, 90, 0, 1, 9, 50, 206, 744, 0, 1, 11, 77, 406, 1774, 7560, 0, 1, 13, 110, 714, 3804, 18204, 91440, 0, 1, 15, 149, 1154, 7374, 41028, 218868, 1285200, 0, 1, 17, 194, 1750, 13144, 85272, 506064, 3036144, 20603520
Offset: 0

Views

Author

Peter Luschny and Mélika Tebni, Jul 01 2022

Keywords

Comments

Conjecture: For p prime, A(n, p) == -1 (mod p) for n >= 0.
Conjecture: Let n >= 0, k >= 1 and k != 4. Then k divides A(n, k) if and only if k is not prime.
From Mélika Tebni, Jul 04 2022: (Start)
Conjecture: The polynomials of A355259 generate the k+1 column of this array.
Conjecture: For p prime and n even, (A(n, p) / (p - 1)) == 1 (mod p). (End)

Examples

			Table A(n, k) begins:
  [0] 0, 1,  3,  14,   90,   744,   7560,    91440,   1285200, ... A029767
  [1] 0, 1,  5,  29,  206,  1774,  18204,   218868,   3036144, ... A103213
  [2] 0, 1,  7,  50,  406,  3804,  41028,   506064,   7084656, ... A355171
  [3] 0, 1,  9,  77,  714,  7374,  85272,  1102968,  15908400, ... A355372
  [4] 0, 1, 11, 110, 1154, 13144, 164136,  2251920,  33923760, ... A355407
  [5] 0, 1, 13, 149, 1750, 21894, 295500,  4320420,  68487120, ... A355414
  [6] 0, 1, 15, 194, 2526, 34524, 502644,  7838928, 131198544, ...
  [7] 0, 1, 17, 245, 3506, 52054, 814968, 13543704, 239548176, ...
		

Crossrefs

Programs

  • Maple
    egf := n -> log((1 - x)/(1 - 2*x))/(1 - x)^n:
    ser := n -> series(egf(n), x, 22):
    row := n -> seq(k!*coeff(ser(n), x, k), k = 0..8):
    seq(print(row(n)), n = 0..8);
    # Alternative:
    A := (n, k) -> add(k!*binomial(k + n - 1, k - j - 1)/(j + 1), j = 0..k-1):
    seq(print(seq(A(n, k), k = 0..8)), n = 0..7);
  • Mathematica
    A[0, 0] = 0; A[n_, k_] := k! * Binomial[n+k-1, k - 1] * HypergeometricPFQ[{1 - k, 1, 1}, {2, n + 1}, -1];
    Table[A[n, k], {n, 0, 8}, {k, 0, 8}] // TableForm

Formula

A(n, k) = k!*Sum_{j=0..k-1} binomial(k + n - 1, k - j - 1) / (j + 1).
A(n, k) = k!*Sum_{j=1..k} binomial(n + k - j - 1, n - 1)*(2^j - 1) / j.
A(n, k) = k!*binomial(n + k - 1, k - 1)*hypergeom([1, 1, 1 - k], [2, n + 1], -1) except for A(0, 0) = 0.