A355257 Array read by ascending antidiagonals. A(n, k) = k! * [x^k] log((1 - x) / (1 - 2*x)) / (1 - x)^n, for 0 <= k <= n.
0, 0, 1, 0, 1, 3, 0, 1, 5, 14, 0, 1, 7, 29, 90, 0, 1, 9, 50, 206, 744, 0, 1, 11, 77, 406, 1774, 7560, 0, 1, 13, 110, 714, 3804, 18204, 91440, 0, 1, 15, 149, 1154, 7374, 41028, 218868, 1285200, 0, 1, 17, 194, 1750, 13144, 85272, 506064, 3036144, 20603520
Offset: 0
Examples
Table A(n, k) begins: [0] 0, 1, 3, 14, 90, 744, 7560, 91440, 1285200, ... A029767 [1] 0, 1, 5, 29, 206, 1774, 18204, 218868, 3036144, ... A103213 [2] 0, 1, 7, 50, 406, 3804, 41028, 506064, 7084656, ... A355171 [3] 0, 1, 9, 77, 714, 7374, 85272, 1102968, 15908400, ... A355372 [4] 0, 1, 11, 110, 1154, 13144, 164136, 2251920, 33923760, ... A355407 [5] 0, 1, 13, 149, 1750, 21894, 295500, 4320420, 68487120, ... A355414 [6] 0, 1, 15, 194, 2526, 34524, 502644, 7838928, 131198544, ... [7] 0, 1, 17, 245, 3506, 52054, 814968, 13543704, 239548176, ...
Programs
-
Maple
egf := n -> log((1 - x)/(1 - 2*x))/(1 - x)^n: ser := n -> series(egf(n), x, 22): row := n -> seq(k!*coeff(ser(n), x, k), k = 0..8): seq(print(row(n)), n = 0..8); # Alternative: A := (n, k) -> add(k!*binomial(k + n - 1, k - j - 1)/(j + 1), j = 0..k-1): seq(print(seq(A(n, k), k = 0..8)), n = 0..7);
-
Mathematica
A[0, 0] = 0; A[n_, k_] := k! * Binomial[n+k-1, k - 1] * HypergeometricPFQ[{1 - k, 1, 1}, {2, n + 1}, -1]; Table[A[n, k], {n, 0, 8}, {k, 0, 8}] // TableForm
Formula
A(n, k) = k!*Sum_{j=0..k-1} binomial(k + n - 1, k - j - 1) / (j + 1).
A(n, k) = k!*Sum_{j=1..k} binomial(n + k - j - 1, n - 1)*(2^j - 1) / j.
A(n, k) = k!*binomial(n + k - 1, k - 1)*hypergeom([1, 1, 1 - k], [2, n + 1], -1) except for A(0, 0) = 0.
Comments