cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A355259 Triangle read by rows. Row k are the coefficients of the polynomials (sorted by ascending powers) which interpolate the points (n, A355257(n, k+1)) for n = 0..k.

Original entry on oeis.org

1, 3, 2, 14, 12, 3, 90, 82, 30, 4, 744, 680, 285, 60, 5, 7560, 6788, 2985, 760, 105, 6, 91440, 80136, 35532, 9870, 1715, 168, 7, 1285200, 1098984, 482300, 138796, 27160, 3444, 252, 8, 20603520, 17227584, 7425492, 2152584, 447405, 65520, 6342, 360, 9
Offset: 0

Views

Author

Peter Luschny, Jul 03 2022

Keywords

Comments

Conjecture from Mélika Tebni: These polynomials generate column k + 1 of

Examples

			[0]        1;
[1]        3,        2;
[2]       14,       12,       3;
[3]       90,       82,      30,       4;
[4]      744,      680,     285,      60,      5;
[5]     7560,     6788,    2985,     760,    105,     6;
[6]    91440,    80136,   35532,    9870,   1715,   168,    7;
[7]  1285200,  1098984,  482300,  138796,  27160,  3444,  252,   8;
[8] 20603520, 17227584, 7425492, 2152584, 447405, 65520, 6342, 360, 9;
.
Seen as polynomials:
p0(x) = 1;
p1(x) = 3 + 2*x;
p2(x) = 14 + 12*x + 3*x^2;
p3(x) = 90 + 82*x + 30*x^2 + 4*x^3;
p4(x) = 744 + 680*x + 285*x^2 + 60*x^3 + 5*x^4;
p5(x) = 7560 + 6788*x + 2985*x^2 + 760*x^3 + 105*x^4 + 6*x^5;
p6(x) = 91440 + 80136*x + 35532*x^2 + 9870*x^3 + 1715*x^4 + 168*x^5 + 7*x^6;
		

Crossrefs

Cf. A355257.

Programs

  • Maple
    A355257 := (n, k) -> add(k!*binomial(k + n - 1, k - j - 1)/(j + 1), j = 0..k-1):
    for k from 0 to 9 do CurveFitting:-PolynomialInterpolation([seq([n, A355257(n, k+1)], n = 0..k)], x):
    print(seq(coeff(%, x, j), j = 0..k)) od:

A355258 a(n) = n! * [x^n] (1 - x)*log((1 - x)/(1 - 2*x)).

Original entry on oeis.org

0, 1, 1, 5, 34, 294, 3096, 38520, 553680, 9036720, 165191040, 3344664960, 74321452800, 1798531257600, 47088252288000, 1326311841254400, 39993302622873600, 1285497518393088000, 43878291581988864000, 1585102883250991104000, 60420385100090695680000, 2423528644964637450240000
Offset: 0

Views

Author

Peter Luschny, Jul 01 2022

Keywords

Crossrefs

Cf. A355257.

Programs

  • Maple
    egf := (1 - x)*log((1 - x)/(1 - 2*x)): ser := series(egf, x, 23):
    seq(n!*coeff(ser, x, n), n = 0..21);
    # Alternative:
    a := n -> local k; n! * ifelse(n < 2, n, (2^(n - 1)*(n - 2) + 1) / (n*(n - 1))):
    seq(a(n), n = 0..21);  # Peter Luschny, Apr 12 2024
  • Mathematica
    a[0]:=0; a[1]:=1; a[n_]:=n!*Sum[Binomial[n-2,k]/(k+2), {k,0,n-2}];
    Flatten[Table[a[n],{n,0,21}]] (* Detlef Meya, Apr 12 2024 *)

Formula

For n>=2, a(n) = (1 + 2^(n-1) * (n-2)) * (n-2)!. - Vaclav Kotesovec, Jul 01 2022
For n>=2, a(n) = n!*Sum_{k, 0, n - 2} (binomial(n - 2, k)/(k + 2)). - Detlef Meya, Apr 12 2024
Showing 1-2 of 2 results.