cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A355334 Triangle read by rows: T(n,k) is the number of unlabeled graphs with n nodes and bipartite dimension (or biclique covering number) k, 0 <= k < n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 6, 0, 1, 6, 20, 7, 0, 1, 9, 61, 80, 5, 0, 1, 12, 159, 650, 221, 1, 0, 1, 16, 381, 4710, 6866, 372, 0, 0, 1, 20, 832, 29921, 183618, 59950, 326, 0, 0
Offset: 1

Views

Author

Pontus von Brömssen, Jun 29 2022

Keywords

Examples

			Triangle begins:
  n\k | 0  1   2     3      4     5   6  7  8
  ----+--------------------------------------
   1  | 1
   2  | 1  1
   3  | 1  2   1
   4  | 1  4   6     0
   5  | 1  6  20     7      0
   6  | 1  9  61    80      5     0
   7  | 1 12 159   650    221     1   0
   8  | 1 16 381  4710   6866   372   0  0
   9  | 1 20 832 29921 183618 59950 326  0  0
		

Crossrefs

Cf. A000088 (row sums), A355333, A355335, A355336.
Columns: A000012 (k=0), A002620 (k=1).

A354741 Triangular array read by rows. T(n,k) is the number of n X n Boolean matrices with row rank k, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 9, 6, 1, 49, 306, 156, 1, 225, 8550, 37488, 19272, 1, 961, 194850, 4811700, 17551800, 10995120
Offset: 0

Views

Author

Geoffrey Critzer, Jun 12 2022

Keywords

Comments

Compare to A286331 which counts n X n matrices over the field GF(2). Note that the limit when n->oo of the probability that a matrix over GF(2) has rank n is equal to Product_{i>=1} (1-1/2^i) = 0.288... (see A048651). Here, it appears (from some empirical computations) that the limiting probability that a Boolean matrix has rank n is 1.

Examples

			Table begins:
  1;
  1,   1;
  1,   9,    6;
  1,  49,  306,   156;
  1, 225, 8550, 37488, 19272;
  ...
		

Crossrefs

Columns k = 0 and 1 give A000012, A060867.
Row sums give A002416.

Programs

  • Mathematica
    Table[B = Tuples[Tuples[{0, 1}, nn],nn]; bospan[matrix_]:= Sort[DeleteDuplicates[
         Map[Clip[Total[#]] &, Drop[Subsets[matrix], 1]]]]; rowrank[matrix_] :=
       If[Total[Map[Total, matrix]] == 0, 0, Length[Select[Drop[Subsets[DeleteCases[matrix, Table[0, {nn}]]], 1],
           bospan[#] == bospan[DeleteCases[matrix, Table[0, {nn}]]] &][[ 1]]]]; Tally[
        Table[rowrank[B[[i]]], {i, 1, 2^(nn^2)}]][[All,2]], {nn, 0, 4}] // Grid

Formula

T(n,0) = 1.
T(n,1) = (2^n-1)^2.
T(n,2) = (3^n - 2*2^n + 1)^2 + (1/2)*(4^n - 2*3^n + 2^n)^2.

Extensions

Row n=5 from Pontus von Brömssen, Jul 14 2022
Showing 1-2 of 2 results.