cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355352 G.f. A(x) satisfies: 2*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.

Original entry on oeis.org

1, 2, 10, 50, 248, 1294, 7092, 40426, 236698, 1412860, 8561906, 52546920, 326011118, 2041512624, 12886608654, 81908498582, 523780469070, 3367399778356, 21752611767804, 141118852010146, 919035717462824, 6006146649948722, 39376700396145616, 258907024677687808
Offset: 0

Views

Author

Paul D. Hanna, Jun 29 2022

Keywords

Comments

a(n) = Sum_{k=0..n} A355350(n,k) * 2^k for n >= 0.

Examples

			G.f.: A(x) = 1 + 2*x + 10*x^2 + 50*x^3 + 248*x^4 + 1294*x^5 + 7092*x^6 + 40426*x^7 + 236698*x^8 + 1412860*x^9 + 8561906*x^10 + ...
where
2*x = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ...
also,
2*x*P(x) = (1 - x*A(x))*(1 - 1/A(x)) * (1 - x^2*A(x))*(1 - x/A(x)) * (1 - x^3*A(x))*(1 - x^2/A(x)) * (1 - x^4*A(x))*(1 - x^3/A(x)) * ...
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + ... + A000041(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1,2],t); for(i=1,n, A=concat(A,0); t = ceil(sqrt(2*n+9));
    A[#A] = -polcoeff( sum(m=-t,t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1));A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) 2*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
(2) 2*x*P(x) = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function (A000041), due to the Jacobi triple product identity.