cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A355350 G.f. A(x,y) satisfies: x*y = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x,y)^n, with coefficients T(n,k) of x^n*y^k in A(x,y) given as a triangle read by rows.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 9, 6, 1, 0, 22, 27, 10, 1, 0, 51, 98, 66, 15, 1, 0, 108, 315, 340, 135, 21, 1, 0, 221, 918, 1495, 910, 246, 28, 1, 0, 429, 2492, 5838, 5070, 2086, 413, 36, 1, 0, 810, 6372, 20805, 24543, 14280, 4284, 652, 45, 1, 0, 1479, 15525, 68816, 106535, 83559, 35168, 8100, 981, 55, 1, 0, 2640, 36280, 213945, 423390, 432930, 243208, 78282, 14355, 1420, 66, 1
Offset: 0

Views

Author

Paul D. Hanna, Jun 29 2022

Keywords

Comments

The term T(n,k) is found in row n and column k of this triangle, and can be used to derive the following sequences.
A355351(n) = Sum_{k=0..n} T(n,k) for n >= 0 (row sums).
A355352(n) = Sum_{k=0..n} T(n,k) * 2^k for n >= 0.
A355353(n) = Sum_{k=0..n} T(n,k) * 3^k for n >= 0.
A355354(n) = Sum_{k=0..n} T(n,k) * 4^k for n >= 0.
A355355(n) = Sum_{k=0..n} T(n,k) * 5^k for n >= 0.
A355356(n) = Sum_{k=0..floor(n/2)} T(n-k,k) for n >= 0 (antidiagonal sums).
A355357(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) for n >= 0.
A354658(n) = T(2*n,n) for n >= 0 (central terms of this triangle).
Conjectures:
(C.1) Column 1 equals A000716, the number of partitions into parts of 3 kinds;
(C.2) Column 2 equals A023005, the number of partitions into parts of 6 kinds.

Examples

			G.f.: A(x,y) = 1 + x*y + x^2*(3*y + y^2) + x^3*(9*y + 6*y^2 + y^3) + x^4*(22*y + 27*y^2 + 10*y^3 + y^4) + x^5*(51*y + 98*y^2 + 66*y^3 + 15*y^4 + y^5) + x^6*(108*y + 315*y^2 + 340*y^3 + 135*y^4 + 21*y^5 + y^6) + x^7*(221*y + 918*y^2 + 1495*y^3 + 910*y^4 + 246*y^5 + 28*y^6 + y^7) + x^8*(429*y + 2492*y^2 + 5838*y^3 + 5070*y^4 + 2086*y^5 + 413*y^6 + 36*y^7 + y^8) + x^9*(810*y + 6372*y^2 + 20805*y^3 + 24543*y^4 + 14280*y^5 + 4284*y^6 + 652*y^7 + 45*y^8 + y^9) + x^10*(1479*y + 15525*y^2 + 68816*y^3 + 106535*y^4 + 83559*y^5 + 35168*y^6 + 8100*y^7 + 981*y^8 + 55*y^9 + y^10) + ...
where
x*y = ... - x^10/A(x,y)^5 + x^6/A(x,y)^4 - x^3/A(x,y)^3 + x/A(x,y)^2 - 1/A(x,y) + 1 - x*A(x,y) + x^3*A(x,y)^2 - x^6*A(x,y)^3 + x^10*A(x,y)^4 -+ ... + (-1)^n * x^(n*(n+1)/2) * A(x,y)^n + ...
also, given P(x) is the partition function (A000041),
x*y*P(x) = (1 - x*A(x,y))*(1 - 1/A(x,y)) * (1 - x^2*A(x,y))*(1 - x/A(x,y)) * (1 - x^3*A(x,y))*(1 - x^2/A(x,y)) * (1 - x^4*A(x,y))*(1 - x^3/A(x,y)) * ... * (1 - x^n*A(x,y))*(1 - x^(n-1)/A(x,y)) * ...
TRIANGLE.
The triangle of coefficients T(n,k) of x^n*y^k in A(x,y), for k = 0..n in row n, begins:
n=0: [1];
n=1: [0, 1];
n=2: [0, 3, 1];
n=3: [0, 9, 6, 1];
n=4: [0, 22, 27, 10, 1];
n=5: [0, 51, 98, 66, 15, 1];
n=6: [0, 108, 315, 340, 135, 21, 1];
n=7: [0, 221, 918, 1495, 910, 246, 28, 1];
n=8: [0, 429, 2492, 5838, 5070, 2086, 413, 36, 1];
n=9: [0, 810, 6372, 20805, 24543, 14280, 4284, 652, 45, 1];
n=10: [0, 1479, 15525, 68816, 106535, 83559, 35168, 8100, 981, 55, 1];
n=11: [0, 2640, 36280, 213945, 423390, 432930, 243208, 78282, 14355, 1420, 66, 1];
n=12: [0, 4599, 81816, 630890, 1563705, 2033244, 1472261, 629280, 160965, 24145, 1991, 78, 1];
...
in which column 1 appears to equal A000716, the coefficients in P(x)^3,
and column 2 appears to equal A023005, the coefficients in P(x)^6,
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + ... + A000041(n)*x^n + ...
Also, the power series expansions of P(x)^3 and P(x)^6 begin
P(x)^3 = 1 + 3*x + 9*x^2 + 22*x^3 + 51*x^4 + 108*x^5 + 221*x^6 + 429*x^7 + 810*x^8 + 1479*x^9 + 2640*x^10 + ... + A000716(n)*x^n + ...
P(x)^6 = 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 918*x^5 + 2492*x^6 + 6372*x^7 + 15525*x^8 + 36280*x^9 + 81816*x^10 + ... + A023005(n)*x^n + ...
		

Crossrefs

Cf. A355351 (row sums), A355352, A355353, A355354, A355355.
Cf. A355356, A355357, A354658 (central terms).
Cf. A354645, A354650 (related table), A000041, A000716, A023005.

Programs

  • PARI
    {T(n,k) = my(A=[1,y],t); for(i=1,n, A=concat(A,0); t = ceil(sqrt(2*(#A)+9));
    A[#A] = -polcoeff( sum(m=-t,t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1));polcoeff(A[n+1],k,y)}
    for(n=0,12, for(k=0,n, print1( T(n,k),", "));print(""))

Formula

G.f. A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} T(n,k)*y^k satisfies:
(1) x*y = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x,y)^n.
(2) x*y*P(x) = Product_{n>=1} (1 - x^n*A(x,y)) * (1 - x^(n-1)/A(x,y)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function (A000041), due to the Jacobi triple product identity.

A359720 T(n,k) = coefficient of x^n*y^k in A(x,y) such that: x = Sum_{n=-oo..+oo} (-1)^n * x^n * (y + x^n)^n * A(x,y)^n.

Original entry on oeis.org

1, 1, 1, 2, 4, 5, 1, 7, 21, 9, 20, 51, 49, 7, 43, 170, 179, 66, 2, 110, 454, 711, 381, 54, 262, 1367, 2390, 1894, 523, 25, 674, 3776, 8361, 8070, 3496, 469, 5, 1684, 11062, 27082, 33093, 19129, 4602, 269, 4397, 31054, 89389, 125983, 93908, 33211, 4325, 91, 11320, 89935, 283170, 470439, 421762, 200449, 43062, 2846, 14
Offset: 0

Views

Author

Paul D. Hanna, Jan 13 2023

Keywords

Comments

Related identity: 0 = Sum_{n=-oo..+oo} x^n * (y - x^n)^n, which holds formally for all y.
The terms in row n start with index k = 0 to k = floor(2*n/3), for n >= 0.
A359721(n) = Sum_{k=0..floor(2*n/3)} T(n,k), for n >= 0 (row sums).
A357797(n) = Sum_{k=0..floor(2*n/3)} T(n,k)*2^k, for n >= 0.
A359723(n) = Sum_{k=0..floor(2*n/3)} T(n,k)*3^k, for n >= 0.
A359724(n) = Sum_{k=0..floor(2*n/3)} T(n,k)*4^k, for n >= 0.
A355357(n) = T(n,0), for n >= 0.
A359725(n) = T(n+2,1), for n >= 0.
A359726(n) = T(n+3,2), for n >= 0.
A000108(n) = T(3*n,2*n), for n >= 0.
A359722(n) = T(3*n+1,2*n), for n >= 0.
A097613(n+2) = T(3*n+2,2*n+1), for n >= 0.

Examples

			G.f.: A(x,y) = 1 + x*(1) + x^2*(1 + 2*y) + x^3*(4 + 5*y + y^2) + x^4*(7 + 21*y + 9*y^2) + x^5*(20 + 51*y + 49*y^2 + 7*y^3) + x^6*(43 + 170*y + 179*y^2 + 66*y^3 + 2*y^4) + x^7*(110 + 454*y + 711*y^2 + 381*y^3 + 54*y^4) + x^8*(262 + 1367*y + 2390*y^2 + 1894*y^3 + 523*y^4 + 25*y^5) + x^9*(674 + 3776*y + 8361*y^2 + 8070*y^3 + 3496*y^4 + 469*y^5 + 5*y^6) + x^10*(1684 + 11062*y + 27082*y^2 + 33093*y^3 + 19129*y^4 + 4602*y^5 + 269*y^6) + x^11*(4397 + 31054*y + 89389*y^2 + 125983*y^3 + 93908*y^4 + 33211*y^5 + 4325*y^6 + 91*y^7) + x^12*(11320 + 89935*y + 283170*y^2 + 470439*y^3 + 421762*y^4 + 200449*y^5 + 43062*y^6 + 2846*y^7 + 14*y^8) + x^13*(29938 + 254654*y + 905307*y^2 + 1683683*y^3 + 1798279*y^4 + 1072012*y^5 + 329533*y^6 + 41858*y^7 + 1254*y^8) + x^14*(78641 + 733725*y + 2825245*y^2 + 5954300*y^3 + 7287245*y^4 + 5277807*y^5 + 2131517*y^6 + 421554*y^7 + 30194*y^8 + 336*y^9 ) + x^15*(210044 + 2088612*y + 8854116*y^2 + 20499318*y^3 + 28639206*y^4 + 24326336*y^5 + 12274991*y^6 + 3370105*y^7 + 420102*y^8 + 15745*y^9 + 42*y^10) + ...
This irregular triangle of coefficients T(n,k) of x^n*y^k, for n >= 0, k = 0..[2*n/3], in g.f. A(x,y) begin:
n = 0: [1],
n = 1: [1],
n = 2: [1, 2],
n = 3: [4, 5, 1],
n = 4: [7, 21, 9],
n = 5: [20, 51, 49, 7],
n = 6: [43, 170, 179, 66, 2],
n = 7: [110, 454, 711, 381, 54],
n = 8: [262, 1367, 2390, 1894, 523, 25],
n = 9: [674, 3776, 8361, 8070, 3496, 469, 5],
n = 10: [1684, 11062, 27082, 33093, 19129, 4602, 269],
n = 11: [4397, 31054, 89389, 125983, 93908, 33211, 4325, 91],
n = 12: [11320, 89935, 283170, 470439, 421762, 200449, 43062, 2846, 14],
n = 13: [29938, 254654, 905307, 1683683, 1798279, 1072012, 329533, 41858, 1254],
n = 14: [78641, 733725, 2825245, 5954300, 7287245, 5277807, 2131517, 421554, 30194, 336],
n = 15: [210044, 2088612, 8854116, 20499318, 28639206, 24326336, 12274991, 3370105, 420102, 15745, 42], ...
...
in which various sequences are found along columns and diagonals:
T(n,0) = A355357(n) = [1, 1, 1, 4, 7, 20, 43, 110, 262, 674, 1684, ...],
T(n+2,1) = A359725(n) = [2, 5, 21, 51, 170, 454, 1367, 3776, 11062, ...],
T(n+3,2) = A359726(n) = [1, 9, 49, 179, 711, 2390, 8361, 27082, 89389, ...],
T(3*n,2*n) = A000108(n) = [1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, ...],
T(3*n+1,2*n) = A359722(n) = [1, 9, 54, 269, 1254, 5642, 24828, 107613, ...],
T(3*n+2,2*n+1) = A097613(n+2) = [2, 7, 25, 91, 336, 1254, 4719, 17875, ...].
		

Crossrefs

Cf. A359721 (row sums), A357797 (y=2), A359723 (y=3), A359724 (y=4).
Cf. A355357 (T(n,0)), A359725 (T(n+2,1)), A359726 (T(n+3,2)).
Cf. A000108 (T(3*n,2*n)), A097613 (T(3*n+2,2*n+1)), A359722 (T(3*n+1,2*n)).

Programs

  • PARI
    /* Print this irregular triangle */
    {T(n,k) = my(A=[1]); for(i=1, n, A=concat(A, 0);
    A[#A] = polcoeff(x - sum(n=-#A-1, #A+1, (-1)^n * x^n * (y + x^n +x*O(x^#A) )^n * Ser(A)^n ), #A-1) );
    polcoeff(A[n+1],k,y)}
    for(n=0, 15, for(k=0, (2*n)\3, print1(T(n,k), ", "));print(""))

Formula

G.f.: A(x,y) = Sum_{n>=0} Sum_{k=0..floor(2*n/3)} T(n,k)*x^n*y^k may be described by the following.
(1) x = Sum_{n=-oo..+oo} (-1)^n * x^n * (y + x^n)^n * A(x,y)^n.
(2) x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / ( (1 + y*x^n)^n * A(x,y)^n ).
T(3*n,2*n) = binomial(2*n+1,n)/(2*n+1) = A000108(n), n >= 0 (Catalan numbers).
T(3*n+2,2*n+1) = binomial(2*n+1,n+1) + binomial(2*n+2,n) = A097613(n+2), for n >= 0.

A355351 G.f. A(x) satisfies: x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.

Original entry on oeis.org

1, 1, 4, 16, 60, 231, 920, 3819, 16365, 71792, 320219, 1446517, 6602975, 30415725, 141231704, 660431602, 3107519738, 14701758926, 69891556656, 333700223891, 1599475107712, 7693580712200, 37125486197570, 179675330190428, 871910824853956, 4241603521253775
Offset: 0

Views

Author

Paul D. Hanna, Jun 29 2022

Keywords

Comments

a(n) = Sum_{k=0..n} A355350(n,k) for n >= 0.

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 16*x^3 + 60*x^4 + 231*x^5 + 920*x^6 + 3819*x^7 + 16365*x^8 + 71792*x^9 + 320219*x^10 + 1446517*x^11 + ...
where
x = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ...
also,
x*P(x) = (1 - x*A(x))*(1 - 1/A(x)) * (1 - x^2*A(x))*(1 - x/A(x)) * (1 - x^3*A(x))*(1 - x^2/A(x)) * (1 - x^4*A(x))*(1 - x^3/A(x)) * ...
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + ... + A000041(n)*x^n + ...
		

Crossrefs

Programs

  • Mathematica
    (* Calculation of constants {d,c}: *) {1/r, s*Sqrt[(-1 + s)*(-1 + r*s) * Log[r]* ((-1 + s)*(-1 + r*s) * QPolyGamma[0, 1, r] - r*(-1 + s)*(-1 + r*s)*Log[r]* Derivative[0, 1][QPochhammer][r, r] / QPochhammer[r] + r*s*Log[r] * QPochhammer[r] * QPochhammer[s, r] * Derivative[0, 1][QPochhammer][1/(r*s), r] + (-1 + r*s) * ((1 - s) * QPolyGamma[0, Log[s]/Log[r], r] + Log[r] * (-1 - (r*(-1 + s) * Derivative[0, 1][QPochhammer][s, r]) / QPochhammer[s, r]))) / (-s*(1 + r - 4*r*s + r*(1 + r)*s^2) * Log[r]^2 + (-1 + s)^2 * (-1 + r*s)^2 * QPolyGamma[1, Log[s]/Log[r], r] + (-1 + s)^2 * (-1 + r*s)^2 * QPolyGamma[1, -Log[r*s]/Log[r], r]) / (2*Pi)]} /. FindRoot[{1/QPochhammer[r] + s*QPochhammer[1/(r*s), r] * QPochhammer[s, r] / ((-1 + s) * (-1 + r*s)) == 0, (-1 + r*s^2)*Log[r] + (-1 + s) * (-1 + r*s) * (QPolyGamma[0, Log[s]/Log[r], r] - QPolyGamma[0, -Log[r*s] / Log[r], r]) == 0}, {r, 1/5}, {s, 2}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Feb 01 2024 *)
  • PARI
    {a(n) = my(A=[1,1],t); for(i=1,n, A=concat(A,0); t = ceil(sqrt(2*n+9));
    A[#A] = -polcoeff( sum(m=-t,t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1));A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
(2) x*P(x) = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function (A000041), due to the Jacobi triple product identity.
From Vaclav Kotesovec, Feb 01 2024: (Start)
Formula (2) can be rewritten as the functional equation x/QPochhammer(x) = QPochhammer(y, x)/(1 - y) * QPochhammer(1/(x*y), x)/(1 - 1/(x*y)).
a(n) ~ c * d^n / n^(3/2), where d = 5.163920888936085556632234304058129... and c = 0.824708825453794494929019119272... (End)

A355352 G.f. A(x) satisfies: 2*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.

Original entry on oeis.org

1, 2, 10, 50, 248, 1294, 7092, 40426, 236698, 1412860, 8561906, 52546920, 326011118, 2041512624, 12886608654, 81908498582, 523780469070, 3367399778356, 21752611767804, 141118852010146, 919035717462824, 6006146649948722, 39376700396145616, 258907024677687808
Offset: 0

Views

Author

Paul D. Hanna, Jun 29 2022

Keywords

Comments

a(n) = Sum_{k=0..n} A355350(n,k) * 2^k for n >= 0.

Examples

			G.f.: A(x) = 1 + 2*x + 10*x^2 + 50*x^3 + 248*x^4 + 1294*x^5 + 7092*x^6 + 40426*x^7 + 236698*x^8 + 1412860*x^9 + 8561906*x^10 + ...
where
2*x = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ...
also,
2*x*P(x) = (1 - x*A(x))*(1 - 1/A(x)) * (1 - x^2*A(x))*(1 - x/A(x)) * (1 - x^3*A(x))*(1 - x^2/A(x)) * (1 - x^4*A(x))*(1 - x^3/A(x)) * ...
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + ... + A000041(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1,2],t); for(i=1,n, A=concat(A,0); t = ceil(sqrt(2*n+9));
    A[#A] = -polcoeff( sum(m=-t,t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1));A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) 2*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
(2) 2*x*P(x) = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function (A000041), due to the Jacobi triple product identity.

A355353 G.f. A(x) satisfies: 3*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.

Original entry on oeis.org

1, 3, 18, 108, 660, 4275, 29106, 205377, 1485279, 10943424, 81866493, 620316297, 4751289063, 36727782675, 286153810542, 2244799306134, 17715992048886, 140560480602810, 1120518766292436, 8970573523101477, 72091628161825608, 581375787259765554, 4703286596619094686
Offset: 0

Views

Author

Paul D. Hanna, Jun 29 2022

Keywords

Comments

a(n) = Sum_{k=0..n} A355350(n,k) * 3^k for n >= 0.

Examples

			G.f.: A(x) = 1 + 3*x + 18*x^2 + 108*x^3 + 660*x^4 + 4275*x^5 + 29106*x^6 + 205377*x^7 + 1485279*x^8 + 10943424*x^9 + 81866493*x^10 + ...
where
3*x = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ...
also,
3*x*P(x) = (1 - x*A(x))*(1 - 1/A(x)) * (1 - x^2*A(x))*(1 - x/A(x)) * (1 - x^3*A(x))*(1 - x^2/A(x)) * (1 - x^4*A(x))*(1 - x^3/A(x)) * ...
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + ... + A000041(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1,3],t); for(i=1,n, A=concat(A,0); t = ceil(sqrt(2*(#A)+9));
    A[#A] = -polcoeff( sum(m=-t,t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1));A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) 3*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
(2) 3*x*P(x) = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function (A000041), due to the Jacobi triple product identity.

A355354 G.f. A(x) satisfies: 4*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.

Original entry on oeis.org

1, 4, 28, 196, 1416, 10860, 87392, 727188, 6196212, 53783336, 474011756, 4231158016, 38174676188, 347566170384, 3189295781780, 29465038957708, 273851282010308, 2558703740102840, 24019990008557160, 226444571054525156, 2142925363606256584, 20349477565111498148
Offset: 0

Views

Author

Paul D. Hanna, Jun 29 2022

Keywords

Comments

a(n) = Sum_{k=0..n} A355350(n,k) * 4^k for n >= 0.

Examples

			G.f.: A(x) = 1 + 4*x + 28*x^2 + 196*x^3 + 1416*x^4 + 10860*x^5 + 87392*x^6 + 727188*x^7 + 6196212*x^8 + 53783336*x^9 + 474011756*x^10 + ...
where
4*x = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ...
also,
4*x*P(x) = (1 - x*A(x))*(1 - 1/A(x)) * (1 - x^2*A(x))*(1 - x/A(x)) * (1 - x^3*A(x))*(1 - x^2/A(x)) * (1 - x^4*A(x))*(1 - x^3/A(x)) * ...
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + ... + A000041(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1,4],t); for(i=1,n, A=concat(A,0); t = ceil(sqrt(2*(#A)+9));
    A[#A] = -polcoeff( sum(m=-t,t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1));A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) 4*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
(2) 4*x*P(x) = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function (A000041), due to the Jacobi triple product identity.

A355355 G.f. A(x) satisfies: 5*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.

Original entry on oeis.org

1, 5, 40, 320, 2660, 23455, 216540, 2064055, 20137945, 200134600, 2019406895, 20635313325, 213109960895, 2220820915065, 23323755734820, 246616999661690, 2623193780773530, 28049464032800110, 301340494687086960, 3251017466141039095, 35207152686408604400
Offset: 0

Views

Author

Paul D. Hanna, Jun 29 2022

Keywords

Comments

a(n) = Sum_{k=0..n} A355350(n,k) * 5^k for n >= 0.

Examples

			G.f.: A(x) = 1 + 5*x + 40*x^2 + 320*x^3 + 2660*x^4 + 23455*x^5 + 216540*x^6 + 2064055*x^7 + 20137945*x^8 + 200134600*x^9 + 2019406895*x^10 + ...
where
5*x = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ...
also,
5*x*P(x) = (1 - x*A(x))*(1 - 1/A(x)) * (1 - x^2*A(x))*(1 - x/A(x)) * (1 - x^3*A(x))*(1 - x^2/A(x)) * (1 - x^4*A(x))*(1 - x^3/A(x)) * ...
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + ... + A000041(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1,5],t); for(i=1,n, A=concat(A,0); t = ceil(sqrt(2*(#A)+9));
    A[#A] = -polcoeff( sum(m=-t,t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1));A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) 5*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
(2) 5*x*P(x) = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function (A000041), due to the Jacobi triple product identity.

A355356 G.f. A(x) satisfies: x^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.

Original entry on oeis.org

1, 0, 1, 3, 10, 28, 79, 216, 603, 1702, 4933, 14620, 44287, 136352, 424858, 1334162, 4211572, 13344072, 42412667, 135217722, 432483522, 1387929369, 4469341807, 14439523193, 46795072968, 152076428228, 495460089510, 1617787324674, 5292984017236, 17348743335252
Offset: 0

Views

Author

Paul D. Hanna, Jun 29 2022

Keywords

Comments

a(n) = Sum_{k=0..floor(n/2)} A355350(n-k,k) for n >= 0.

Examples

			G.f.: A(x) = 1 + x^2 + 3*x^3 + 10*x^4 + 28*x^5 + 79*x^6 + 216*x^7 + 603*x^8 + 1702*x^9 + 4933*x^10 + 14620*x^11 + 44287*x^12 + ...
where
x^2 = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ...
also,
x^2*P(x) = (1 - x*A(x))*(1 - 1/A(x)) * (1 - x^2*A(x))*(1 - x/A(x)) * (1 - x^3*A(x))*(1 - x^2/A(x)) * (1 - x^4*A(x))*(1 - x^3/A(x)) * ...
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + ... + A000041(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1,0,1],t); for(i=1,n, A=concat(A,0); t = ceil(sqrt(2*n+9));
    A[#A] = polcoeff( x^2 - sum(m=-t,t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1));A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) x^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
(2) x^2*P(x) = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function (A000041), due to the Jacobi triple product identity.

A357221 Coefficients in the power series A(x) such that: x*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) * A(x)^n.

Original entry on oeis.org

1, 1, 2, 8, 26, 97, 361, 1399, 5532, 22318, 91387, 379037, 1588769, 6720065, 28645624, 122937300, 530748439, 2303446566, 10043922651, 43979954296, 193309569331, 852599816069, 3772220833468, 16737583785420, 74461239372631, 332062396407641, 1484162266154404
Offset: 0

Views

Author

Paul D. Hanna, Sep 18 2022

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 26*x^4 + 97*x^5 + 361*x^6 + 1399*x^7 + 5532*x^8 + 22318*x^9 + 91387*x^10 + 379037*x^11 + 1588769*x^12 + ...
such that
x*A(x) = ... + x^12/A(x)^4 - x^6/A(x)^3 + x^2/A(x)^2 - 1/A(x) + 1 - x^2*A(x) + x^6*A(x)^2 - x^12*A(x)^3 + x^20*A(x)^4 + ... + (-1)^n * x^(n*(n+1)) * A(x)^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n,p=1) = my(A=[1]); for(i=1, n, A=concat(A, 0);
    A[#A] = polcoeff( x*Ser(A)^p - sum(m=-ceil(sqrt(n+1)), ceil(sqrt(n+1)), (-1)^m*x^(m*(m+1))*Ser(A)^m ), #A-1)); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) satisfies:
(1) x*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) * A(x)^n.
(2) -x*A(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) / A(x)^n.
(3) x*A(x) = Product_{n>=1} (1 - x^(2*n)*A(x)) * (1 - x^(2*n-2)/A(x)) * (1 - x^(2*n)), due to the Jacobi triple product identity.
(4) -x*A(x)^2 = Product_{n>=1} (1 - x^(2*n)/A(x)) * (1 - x^(2*n-2)*A(x)) * (1 - x^(2*n)), due to the Jacobi triple product identity.

A357222 Coefficients in the power series A(x) such that: x*A(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) * A(x)^n.

Original entry on oeis.org

1, 1, 3, 15, 73, 391, 2180, 12620, 75056, 456004, 2817879, 17656517, 111919061, 716379379, 4623944175, 30062540989, 196692237527, 1294112710358, 8556766562091, 56829292404053, 378936456243142, 2535866861527016, 17025875430611442, 114654511539186113
Offset: 0

Views

Author

Paul D. Hanna, Sep 18 2022

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 15*x^3 + 73*x^4 + 391*x^5 + 2180*x^6 + 12620*x^7 + 75056*x^8 + 456004*x^9 + 2817879*x^10 + ...
such that
x*A(x)^2 = ... + x^12/A(x)^4 - x^6/A(x)^3 + x^2/A(x)^2 - 1/A(x) + 1 - x^2*A(x) + x^6*A(x)^2 - x^12*A(x)^3 + x^20*A(x)^4 + ... + (-1)^n * x^(n*(n+1)) * A(x)^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n,p=2) = my(A=[1]); for(i=1, n, A=concat(A, 0);
    A[#A] = polcoeff( x*Ser(A)^p - sum(m=-ceil(sqrt(n)), ceil(sqrt(n)), (-1)^m*x^(m*(m+1))*Ser(A)^m ), #A-1)); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) satisfies:
(1) x*A(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) * A(x)^n.
(2) -x*A(x)^3 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) / A(x)^n.
(3) x*A(x)^2 = Product_{n>=1} (1 - x^(2*n)*A(x)) * (1 - x^(2*n-2)/A(x)) * (1 - x^(2*n)), due to the Jacobi triple product identity.
(4) -x*A(x)^3 = Product_{n>=1} (1 - x^(2*n)/A(x)) * (1 - x^(2*n-2)*A(x)) * (1 - x^(2*n)), due to the Jacobi triple product identity.
Showing 1-10 of 20 results. Next