cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355358 Coefficients in the expansion of A(x) = 1 / Product_{n>=0} (1 - x^(13*n+1))*(1 - x^(13*n+3))*(1 - x^(13*n+4))*(1 - x^(13*n+9))*(1 - x^(13*n+10))*(1 - x^(13*n+12)).

Original entry on oeis.org

1, 1, 1, 2, 3, 3, 4, 5, 6, 8, 10, 11, 15, 18, 21, 25, 31, 36, 43, 50, 59, 69, 81, 93, 109, 126, 146, 168, 194, 222, 256, 291, 333, 379, 432, 489, 557, 629, 712, 805, 909, 1021, 1152, 1293, 1452, 1627, 1824, 2037, 2281, 2544, 2838, 3162, 3525, 3916, 4356
Offset: 0

Views

Author

Paul D. Hanna, Jul 31 2022

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 4*x^6 + 5*x^7 + 6*x^8 + 8*x^9 + 10*x^10 + 11*x^11 + 15*x^12 + 18*x^13 + 21*x^14 + ...
and the related series B(x) begins
B(x) = 1 + x^2 + x^4 + x^5 + 2*x^6 + 2*x^7 + 3*x^8 + 2*x^9 + 4*x^10 + 4*x^11 + 6*x^12 + 6*x^13 + 8*x^14 + 9*x^15 + ... + A355359(n)*x^n + ...
such that A(x) and B(x) satisfy
1 = A(x^3)*B(x) - x^2*A(x)*B(x^3),
and
1 = A(x)^3*B(x) - x^2*A(x)*B(x)^3 - 3*x*A(x)^2*B(x)^2.
Related expansions begin
A(x^3)*B(x) = 1 + x^2 + x^3 + x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 5*x^8 + 6*x^9 + 7*x^10 + 10*x^11 + 13*x^12 + 14*x^13 + 20*x^14 + 24*x^15 + ...
A(x)*B(x^3) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 5*x^6 + 6*x^7 + 7*x^8 + 10*x^9 + 13*x^10 + ...
A(x)^3*B(x) = 1 + 3*x + 7*x^2 + 16*x^3 + 34*x^4 + 65*x^5 + 120*x^6 + 213*x^7 + 365*x^8 + 609*x^9 + 994*x^10 + ...
A(x)*B(x)^3 = 1 + x + 4*x^2 + 5*x^3 + 12*x^4 + 18*x^5 + 35*x^6 + 54*x^7 + 94*x^8 + 142*x^9 + 232*x^10 + ...
A(x)^2*B(x)^2 = 1 + 2*x + 5*x^2 + 10*x^3 + 20*x^4 + 36*x^5 + 65*x^6 + 110*x^7 + 185*x^8 + 300*x^9 + 481*x^10 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[1/Product[(1 - x^(13*n + 1))*(1 - x^(13*n + 3))*(1 - x^(13*n + 4))*(1 - x^(13*n + 9))*(1 - x^(13*n + 10))*(1 - x^(13*n + 12)), {n, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 01 2022 *)
  • PARI
    {a(n) = polcoeff( 1/prod(m=0, n, (1 - x^(13*m+1))*(1 - x^(13*m+3))*(1 - x^(13*m+4))*(1 - x^(13*m+9))*(1 - x^(13*m+10))*(1 - x^(13*m+12)), 1 + x*O(x^n)), n)};
    for(n=0,60,print1(a(n),", "))
    
  • PARI
    {a(n) = polcoeff( sqrt( prod(k=1, n, (1 - x^(13*k))/(1 - x^k)^(1 + kronecker(13, k)), 1 + x*O(x^n)) ), n)};
    for(n=0,60,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n and related function B(x) satisfy the following relations.
(1.a) A(x^3)*B(x) - x^2*A(x)*B(x^3) = 1.
(1.b) A(x)^3*B(x) - x^2*A(x)*B(x)^3 - 3*x*A(x)^2*B(x)^2 = 1.
(2.a) A(x) = 1 / Product_{n>=0} (1 - x^(13*n+1))*(1 - x^(13*n+3))*(1 - x^(13*n+4))*(1 - x^(13*n+9))*(1 - x^(13*n+10))*(1 - x^(13*n+12)).
(2.b) B(x) = 1 / Product_{n>=0} (1 - x^(13*n+2))*(1 - x^(13*n+5))*(1 - x^(13*n+6))*(1 - x^(13*n+7))*(1 - x^(13*n+8))*(1 - x^(13*n+11)).
(3.a) A(x)*B(x) = Product_{n>=1} (1 - x^(13*n))/(1 - x^n), a g.f. of A341714.
(3.b) A(x)/B(x) = Product_{n>=1} 1/(1 - x^n)^Kronecker(13, n), a g.f. of A214157.
(4.a) A(x) = sqrt( Product_{n>=1} (1 - x^(13*n))/(1 - x^n)^(1 + Kronecker(13, n)) ).
(4.b) B(x) = sqrt( Product_{n>=1} (1 - x^(13*n))/(1 - x^n)^(1 - Kronecker(13, n)) ).
(5.a) A(x) = ( Product_{n>=1} (1 - x^(13*n))^3 ) / ( f(-x, -x^12) * f(-x^3, -x^10) * f(-x^4, -x^9) ).
(5.b) B(x) = ( Product_{n>=1} (1 - x^(13*n))^3 ) / ( f(-x^2, -x^11) * f(-x^5, -x^8) * f(-x^6, -x^7) ) .
Formulas (4.*) and (5.*) are derived from formulas given by Michael Somos in A214157, where f(a,b) = Sum_{n=-oo..+oo} a^(n*(n+1)/2) * b^(n*(n-1)/2) is Ramanujan's theta function..
a(n) ~ exp(2*Pi*sqrt(n/13)) / (16 * 13^(1/4) * sin(Pi/13) * sin(3*Pi/13) * cos(5*Pi/26) * n^(3/4)). - Vaclav Kotesovec, Aug 01 2022