A355385 Number of pairs (y, v) of integer partitions of n where the length of v equals the number of distinct parts in y.
1, 1, 2, 3, 7, 12, 25, 43, 81, 141, 243, 409, 699, 1132, 1844, 2995, 4744, 7408, 11655, 17839, 27509, 41546, 62879, 93537, 139974, 205547, 302714, 440097, 640968, 921774, 1327538, 1891548, 2696635, 3809860, 5380257, 7540778, 10561566, 14687109, 20408170, 28183998, 38882009
Offset: 0
Keywords
Examples
The a(0) = 1 through a(5) = 10 pairs: ()() (1)(1) (2)(2) (3)(3) (4)(4) (5)(5) (11)(2) (21)(21) (31)(31) (41)(41) (111)(3) (31)(22) (41)(32) (22)(4) (32)(41) (211)(31) (32)(32) (211)(22) (311)(41) (1111)(4) (311)(32) (221)(41) (221)(32) (2111)(41) (2111)(32) (11111)(5)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Crossrefs
The inhomogeneous version with containment and multiplicity is A339006.
The inhomogeneous version with containment is A355383.
The inhomogeneous version with containment for compositions is A355384.
The version for compositions is A355388.
A001970 counts multiset partitions of partitions.
A063834 counts partitions of each part of a partition.
A323583 counts splittings of partitions.
Programs
-
Mathematica
Table[Length[Select[Tuples[IntegerPartitions[n],2],Length[Union[#[[1]]]]==Length[#[[2]]]&]],{n,0,15}]
-
PARI
\\ P gives A008284 and R gives A116608 as g.f.'s. P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))} R(n,y) = {prod(k=1, n, 1 + y/(1 - x^k) - y + O(x*x^n))} seq(n) = {my(g=Vec(P(n,y)), h=Vec(R(n,y))); vector(n+1, i, my(p=g[i], q=h[i]); sum(j=0, poldegree(q), polcoef(p,j)*polcoef(q,j)))} \\ Andrew Howroyd, Dec 31 2022
Formula
Extensions
Terms a(26) and beyond from Andrew Howroyd, Dec 31 2022
Comments