cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A355391 Position of first appearance of n in A181591 = binomial(bigomega(n), omega(n)).

Original entry on oeis.org

1, 4, 8, 16, 32, 24, 128, 256, 512, 48, 2048, 4096, 8192, 16384, 96, 65536, 131072, 262144, 524288, 240, 192, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 384, 536870912, 1073741824, 2147483648, 4294967296, 8589934592, 17179869184, 480, 768, 137438953472
Offset: 1

Views

Author

Gus Wiseman, Jul 04 2022

Keywords

Comments

The statistic omega = A001221 counts distinct prime factors (without multiplicity).
The statistic bigomega = A001222 counts prime factors with multiplicity.
We have A181591(2^k) = k, so the sequence is fully defined. Positions meeting this maximum are A185024, complement A006987.

Examples

			The terms together with their prime indices begin:
       1: {}
       4: {1,1}
       8: {1,1,1}
      16: {1,1,1,1}
      32: {1,1,1,1,1}
      24: {1,1,1,2}
     128: {1,1,1,1,1,1,1}
     256: {1,1,1,1,1,1,1,1}
     512: {1,1,1,1,1,1,1,1,1}
      48: {1,1,1,1,2}
    2048: {1,1,1,1,1,1,1,1,1,1,1}
    4096: {1,1,1,1,1,1,1,1,1,1,1,1}
    8192: {1,1,1,1,1,1,1,1,1,1,1,1,1}
   16384: {1,1,1,1,1,1,1,1,1,1,1,1,1,1}
      96: {1,1,1,1,1,2}
   65536: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
  131072: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
  262144: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
  524288: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
     240: {1,1,1,1,2,3}
     192: {1,1,1,1,1,1,2}
		

Crossrefs

Positions of powers of 2 are A185024, complement A006987.
Counting multiplicity gives A355386.
The sorted version is A355392.
A000005 counts divisors.
A001221 counts prime factors without multiplicity.
A001222 count prime factors with multiplicity.
A070175 gives representatives for bigomega and omega, triangle A303555.

Programs

  • Mathematica
    s=Table[Binomial[PrimeOmega[n],PrimeNu[n]],{n,1000}];
    Table[Position[s,k][[1,1]],{k,Select[Union[s],SubsetQ[s,Range[#]]&]}]
  • PARI
    f(n) = binomial(bigomega(n), omega(n)); \\ A181591
    a(n) = my(k=1); while (f(k) != n, k++); k; \\ Michel Marcus, Jul 10 2022

Formula

binomial(bigomega(a(n)), omega(a(n))) = n.

Extensions

a(22)-a(28) from Michel Marcus, Jul 10 2022
a(29)-a(37) from Amiram Eldar, Jul 10 2022
Showing 1-1 of 1 results.