A355432 a(n) = number of k < n such that rad(k) = rad(n) and k does not divide n, where rad(k) = A007947(k).
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Keywords
Examples
a(1) = 18, since 18/6 >= 3. We note that rad(12) = rad(18) = 6, yet 12 does not divide 18. a(2) = 24, since 24/6 >= 3. rad(18) = rad(24) = 6 and 24 mod 18 = 6. a(3) = 36, since 36/6 >= 3. rad(24) = rad(36) = 6 and 36 mod 24 = 12. a(6) = 54, since 54/6 >= 3. m in {12, 24, 36, 48} are such that rad(m) = rad(54) = 6, but none divides 54, etc.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..16384
- Michael De Vlieger, Plot (k, n) at (x, -y), k = 1..n, n = 1..54, showing k in A126706 in dark blue, n in A360768 in dark red, and for n and nondivisor k such that rad(k) = rad(n), we highlight in large black dots. This sequence counts the number of black dots in row n.
- Michael De Vlieger, Condensation of the above plot, showing k = 1..n and only n in A360768 and n <= 54.
Crossrefs
Programs
-
Mathematica
rad[n_] := rad[n] = Times @@ FactorInteger[n][[All, 1]]; Table[Which[PrimePowerQ[n], 0, SquareFreeQ[n], 0, True, r = rad[n]; Count[Select[Range[n], Nor[PrimePowerQ[#], SquareFreeQ[#]] &], _?(And[rad[#] == r, Mod[n, #] != 0] &)]], {n, 120}]
-
PARI
rad(n) = factorback(factorint(n)[, 1]); \\ A007947 a(n) = my(rn=rad(n)); sum(k=1, n-1, if (n % k, rad(k)==rn)); \\ Michel Marcus, Feb 23 2023
Comments