cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355463 Expansion of Sum_{k>=0} (x/(1 - k^k * x))^k.

Original entry on oeis.org

1, 1, 2, 10, 131, 5656, 869097, 490286392, 1264458639313, 12443651667592768, 681538604797281047489, 153070077563816488157872384, 205935348854901274982393017521537, 1352544986573612111579941739713633174912
Offset: 0

Views

Author

Seiichi Manyama, Jul 03 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Table[Sum[Binomial[n-1,k-1] * k^(k*(n-k)), {k,1,n}], {n,1,20}]}] (* Vaclav Kotesovec, Feb 16 2023 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (x/(1-k^k*x))^k))
    
  • PARI
    a(n) = if(n==0, 1, sum(k=1, n, k^(k*(n-k))*binomial(n-1, k-1)));

Formula

a(n) = Sum_{k=1..n} k^(k*(n-k)) * binomial(n-1,k-1) for n > 0.