cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355493 Expansion of Sum_{k>=0} (k^3 * x)^k/(1 - x)^(k+1).

Original entry on oeis.org

1, 2, 67, 19879, 16856337, 30601661681, 101743314190033, 559257425236996361, 4726837695171258085569, 58192258417571877186113281, 1000581709943568968705788233921, 23236157618902718144948494353385025, 709080642850925779233576351761544968833
Offset: 0

Views

Author

Seiichi Manyama, Jul 04 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k^3*x)^k/(1-x)^(k+1)))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x)*sum(k=0, N, (k^3*x)^k/k!)))
    
  • PARI
    a(n) = sum(k=0, n, k^(3*k)*binomial(n, k));

Formula

E.g.f.: exp(x) * Sum_{k>=0} (k^3 * x)^k/k!.
a(n) = Sum_{k=0..n} k^(3*k) * binomial(n,k).