A355509 Peaceable coexisting armies of knights: a(n) is the maximum number m such that m white knights and m black knights can coexist on an n X n chessboard without attacking each other.
0, 2, 3, 6, 10, 14, 18, 24, 32, 40, 50, 60, 72, 84, 98, 112, 128, 144, 162, 180, 200, 220, 242, 264, 288, 312, 338, 364, 392, 420, 450, 480, 512, 544, 578, 612, 648, 684, 722, 760, 800, 840, 882, 924, 968, 1012, 1058, 1104, 1152, 1200, 1250, 1300, 1352, 1404
Offset: 1
Examples
Examples for n=2 to n=6 have been included as they do not follow the general formula. . A solution illustrating a(2)=2: +-----+ | B B | | W W | +-----+ . A solution illustrating a(3)=3: +-------+ | . . . | | B B W | | W W B | +-------+ . A solution illustrating a(4)=6: +---------+ | B B . W | | W W . B | | B B . W | | W W . B | +---------+ . A solution illustrating a(5)=10: +-----------+ | W B W B W | | W B W B W | | . . . . . | | B W B W B | | B W B W B | +-----------+ . A solution illustrating a(6)=14: +-------------+ | B B W W B B | | W W B B W W | | B . . . . B | | W . . . . W | | B B W W B B | | W W B B W W | +-------------+ . Examples for n=7 and n=8 are provided, as while both follow the same formula, the layout for even values of n differs from the layout for odd values of n (related to the fact that, for even values of n, the floor function rounds down a non-integer value). . A solution illustrating a(7)=18: +---------------+ | B B B B B B B | | B B B B B B B | | B . B . B . B | | . . . . . . . | | W . W . W . W | | W W W W W W W | | W W W W W W W | +---------------+ . A solution illustrating a(8)=24: +-----------------+ | B B B B B B B B | | B B B B B B B B | | B B B B B B B B | | . . . . . . . . | | . . . . . . . . | | W W W W W W W W | | W W W W W W W W | | W W W W W W W W | +-----------------+
Links
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Crossrefs
Formula
For n > 6, a(n) = floor(((n-1)^2)/2).
G.f.: x^2*(2 - x + 2*x^3 - 2*x^4 - x^5 + 2*x^6 + 2*x^7 - 2*x^8)/((1 - x)^3*(1 + x)). - Stefano Spezia, Jul 05 2022
Comments