cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355589 a(n) is the least distance of two nodes on the same grid line in an infinite triangular lattice of one-ohm resistors for which the resistance measured between the two nodes is greater than n ohms.

Original entry on oeis.org

1, 38, 8632, 1991753, 459625866
Offset: 0

Views

Author

Hugo Pfoertner, Jul 23 2022

Keywords

Comments

The terms are obtained by a high-precision evaluation of the integral R(j,k) = (1/Pi) * Integral_{y=0..Pi/2} (1 - exp(-|j-k|*x)*cos((j+k)*y)) / (sinh(x)*cos(y)) dy, with x = arccosh(2/cos(y)-cos(y)), such that floor(R(m-1,0)) < floor(R(m,0)). The values of m for which this condition is satisfied are the terms of the sequence. See Atkinson and van Steenwijk (1999, page 491, Appendix B) for a Mathematica implementation of the integral.

Examples

			a(0) = 1: R(1,0) = 1/3 is the first resistance > 0;
a(1) = 38: R(37,0) = 0.9980131561985..., R(38,0) = 1.0029141482654...;
a(2) = 8632: R(8631) = 1.99999787859849..., R(8632) = 2.000019169949784851...;
a(3) = 1991753: R(1991752) = 2.99999998586..., R(1991753) = 3.000000078131...;
a(4) = 459625866: R(459625865)=3.999999999731...; R(459625866)=4.000000000131....
Assuming a fitted asymptotic logarithmic growth of R(x,0) = log(x)/(Pi*sqrt(3)) + 0.334412..., a(5) is approximately 1.06*10^11, but 250 GByte of main memory is not enough for PARI's function intnum to compute the value of the integral for arguments of that size.
		

Crossrefs

Cf. A355585, A355955 (same problem for square lattice).