A355592 Positions of records in A357299: integers m such that the number of divisors whose first digit equals the first digit of m sets a new record.
1, 10, 100, 108, 120, 180, 1008, 1260, 1680, 10010, 10080, 15120, 100320, 100800, 110880, 166320, 196560, 1003200, 1004640, 1005480, 1028160, 1053360, 1081080, 1441440, 1884960, 10024560, 10090080, 10533600, 10810800, 12252240, 17297280, 100069200, 100124640, 100212840, 100245600
Offset: 1
Examples
1008 is a term because A357299(1008) = 10, the ten corresponding divisors are {1, 12, 14, 16, 18, 112, 126, 144, 168, 1008} and 10 is larger than any earlier value in A357299.
Links
- David A. Corneth, Table of n, a(n) for n = 1..101
Programs
-
Mathematica
f[n_] := IntegerDigits[n][[1]]; s[n_] := Module[{fn = f[n]}, DivisorSum[n, 1 &, f[#] == fn &]]; seq = {}; sm = 0; Do[If[(sn = s[n]) > sm, sm = sn; AppendTo[seq, n]], {n, 1, 200000}]; seq (* Amiram Eldar, Sep 24 2022 *)
-
PARI
f(n) = my(fd=digits(n)[1]); sumdiv(n, d, digits(d)[1] == fd); \\ A357299 lista(nn) = my(r=0, x, list=List()); for (n=1, nn, if ((x=f(n)) > r, listput(list, n); r = x);); Vec(list); \\ Michel Marcus, Sep 24 2022
-
PARI
upto(n) = { r = -1; res = List(); forfactored(i = 1, n, if(numdiv(i[2]) >= r, d = divisors(i[2]); t = i[1]\10^logint(i[1], 10); c = sum(j = 1, #d, d[j]\10^logint(d[j], 10) == t); if(c > r, r = c; listput(res, i[1]); ) ) ); res } \\ David A. Corneth, Sep 24 2022
-
Python
from sympy import divisors from itertools import count, islice def b(n): f = str(n)[0]; return sum(1 for d in divisors(n) if str(d)[0]==f) def agen(): # generator of terms record = -1 for m in count(1): v = b(m) if v > record: yield m; record = v print(list(islice(agen(), 17))) # Michael S. Branicky, Sep 24 2022
Extensions
More terms from Michel Marcus, Sep 24 2022
Comments