cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355594 a(n) is the smallest integer that has exactly n alternating divisors.

Original entry on oeis.org

1, 2, 4, 6, 16, 12, 24, 48, 36, 96, 72, 144, 210, 180, 420, 360, 504, 864, 630, 1080, 1512, 2160, 1260, 3150, 1890, 2520, 5040, 6300, 3780, 10080, 12600, 9450, 7560, 32760, 15120, 18900, 22680, 30240, 88830, 37800, 45360, 75600, 105840, 90720, 151200, 162540, 254520
Offset: 1

Views

Author

Bernard Schott, Jul 08 2022

Keywords

Comments

This sequence first differs from A005179 at index 7 where A005179(7) = 64.

Examples

			16 has 5 divisors: {1, 2, 4, 8, 16} all of which are alternating integers; no positive integer smaller than 16 has five alternating divisors, hence a(5) = 16.
96 has 12 divisors: {1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96}, only 24 and 48 are not alternating; no positive integer smaller than 96 has ten alternating divisors, hence a(10) = 96.
		

Crossrefs

Cf. A005179, A030141 (alternating numbers), A355593, A355595, A355596.
Similar, but with undulating divisors: A355303.

Programs

  • Maple
    isalt:= proc(n) local L; option remember;
       L:= convert(n,base,10) mod 2;
       L:= L[2..-1]-L[1..-2];
       not member(0,L)
    end proc:
    N:= 50: # for a(1)..a(N)
    V:= Vector(N): count:= 0:
    for n from 1 while count < N do
      w:= nops(select(isalt,numtheory:-divisors(n)));
      if w <= N and V[w] = 0 then V[w]:= n; count:= count+1 fi
    od:
    convert(V,list); # Robert Israel, Jan 24 2023
  • Mathematica
    q[n_] := ! MemberQ[Differences[Mod[IntegerDigits[n], 2]], 0]; f[n_] := DivisorSum[n, 1 &, q[#] &]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n]; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[50, 10^6] (* Amiram Eldar, Jul 08 2022 *)
  • PARI
    is(n, d=digits(n))=for(i=2, #d, if((d[i]-d[i-1])%2==0, return(0))); 1; \\ A030141
    a(n) = my(k=1); while (sumdiv(k, d, is(d)) != n, k++); k; \\ Michel Marcus, Jul 11 2022
    
  • Python
    from itertools import count
    from sympy import divisors
    def A355594(n):
        for m in count(1):
            if sum(1 for k in divisors(m,generator=True) if all(int(a)+int(b)&1 for a, b in zip(str(k),str(k)[1:]))) == n:
                return m # Chai Wah Wu, Jul 12 2022

Formula

a(n) >= A005179(n). - David A. Corneth, Jan 25 2023

Extensions

More terms from David A. Corneth, Jul 08 2022