A355596 Numbers all of whose divisors are alternating numbers (A030141).
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 21, 23, 25, 27, 29, 32, 36, 41, 43, 47, 49, 50, 54, 58, 61, 63, 67, 69, 81, 83, 87, 89, 94, 98, 101, 103, 107, 109, 123, 125, 127, 129, 141, 145, 147, 149, 161, 163, 167, 181, 183, 189, 214, 218, 250, 254, 290, 298
Offset: 1
Examples
32 is a term since all the divisors of 32, i.e., 1, 2, 4, 8, 16 and 32, are alternating numbers
Crossrefs
Programs
-
Mathematica
q[n_] := AllTrue[Divisors[n], !MemberQ[Differences[Mod[IntegerDigits[#], 2]], 0] &]; Select[Range[300], q] (* Amiram Eldar, Jul 12 2022 *)
-
PARI
isokd(n, d=digits(n))=for(i=2, #d, if((d[i]-d[i-1])%2==0, return(0))); 1; \\ A030141 isok(m) = sumdiv(m, d, isokd(d)) == numdiv(m); \\ Michel Marcus, Jul 12 2022
-
Python
from sympy import divisors def p(d): return 0 if d in "02468" else 1 def c(n): if n < 10: return True s = str(n) return all(p(s[i]) != p(s[i+1]) for i in range(len(s)-1)) def ok(n): return c(n) and all(c(d) for d in divisors(n, generator=True)) print([k for k in range(1, 200) if ok(k)]) # Michael S. Branicky, Jul 12 2022
Extensions
a(51) and beyond from Michael S. Branicky, Jul 12 2022
Comments