A355641 Numbers k that can be written as the sum of 5 divisors of k (not necessarily distinct).
5, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, 28, 30, 32, 35, 36, 40, 42, 45, 48, 50, 54, 55, 56, 60, 63, 64, 65, 66, 70, 72, 75, 78, 80, 81, 84, 85, 88, 90, 95, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 115, 117, 120, 125, 126, 128, 130, 132, 135, 136, 138
Offset: 1
Keywords
Examples
9 is in the sequence since 9 = 3+3+1+1+1, where each summand divides 9.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Robert Israel, Proof that A355641 consists of all numbers divisible by at least one of 5, 6, 8, 9, 14, 21.
Crossrefs
Programs
-
Maple
F:= proc(x,S,j) option remember; local s,k; if j = 0 then return(x = 0) fi; if S = [] or x > j*S[-1] or x < j*S[1] then return false fi; s:= S[-1]; for k from 0 to min(j,floor(x/s)) do if procname(x-k*s, S[1..-2],j-k) then return true fi od; false end proc: select(t -> F(t, sort(convert(numtheory:-divisors(t),list)),5), [$1..200]); # Robert Israel, Aug 31 2022
-
Mathematica
q[n_, k_] := AnyTrue[Tuples[Divisors[n], k], Total[#] == n &]; Select[Range[140], q[#, 5] &] (* Amiram Eldar, Aug 19 2022 *)
-
PARI
isok(k) = my(d=divisors(k)); forpart(p=k, if (setintersect(d, Set(p)) == Set(p), return(1)), , [5,5]); \\ Michel Marcus, Aug 19 2022
Comments