cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355730 Number of binary relations R on [n] such that R is contained in R^2.

Original entry on oeis.org

1, 2, 13, 333, 34924, 15339497, 28399641433
Offset: 0

Views

Author

Geoffrey Critzer, Jul 15 2022

Keywords

Comments

Equivalently, a(n) is the number of binary relations R on [n] such that for all x,y in [n], if (x,y) is in R then there is a z in [n] such that (x,z) and (z,y) are both in R. A relation having this property is sometimes called a dense relation.
Almost all relations are dense.
A relation is idempotent if and only if it is both transitive and dense. A transitive relation R is dense (hence idempotent) if and only if there does not exist a pair (C_1,C_2) of edgeless components such that C_1 covers C_2 in the condensation of G(R). Here, G(R) is the directed graph (with self loops allowed) associated to R. The condensation of G(R) is the acyclic digraph obtained from G(R) by replacing every strongly connected component (SCC) by a single vertex and all directed edges from one SCC to another with a single directed edge. See Schein reference.
If R is contained in R^2 then the maximal cyclic nets in R are primitive (A070322) so that R is convergent, i.e., the period of R is equal to 1. Moreover, R converges to its transitive closure so that the index of R is at most n. See Rosenblatt reference. - Geoffrey Critzer, Sep 05 2023

Examples

			a(2) = 13 because all 16 binary relations on [2] are dense except for {{0,1},{0,0}}, {{0,0},{1,0}}, {{0,1},{1,0}}.
		

Crossrefs

Programs

  • Mathematica
    Table[B = Tuples[Tuples[{0, 1}, nn], nn]; subsetQ[matrix1_, matrix2_] :=
      Apply[And, Map[! MemberQ[#, 1] &, matrix1 - matrix2]];Select[B, subsetQ[#, Clip[#.#]] &] // Length, {nn, 0, 4}]

Formula

Limit_{n->oo} a(n)/2^(n^2) = 1.

Extensions

a(5)-a(6) from Pontus von Brömssen, Jul 19 2022
Comments clarified by Geoffrey Critzer, Oct 16 2023