A355730 Number of binary relations R on [n] such that R is contained in R^2.
1, 2, 13, 333, 34924, 15339497, 28399641433
Offset: 0
Examples
a(2) = 13 because all 16 binary relations on [2] are dense except for {{0,1},{0,0}}, {{0,0},{1,0}}, {{0,1},{1,0}}.
Links
- G. Markowsky, Bounds on the index and period of a binary relation on a finite set, Semigroup Forum, Vol 13 (1977), 253-259.
- D. Rosenblatt, On the graphs of finite Boolean relation matrices, Journal of Research of the National Bureau of Standards, 67B No. 4, 1963.
- B. M. Schein, A construction for idempotent binary relations, Proc. Japan Acad., Vol. 46, No. 3 (1970), pp. 246-247.
- Wikipedia, Dense order.
Programs
-
Mathematica
Table[B = Tuples[Tuples[{0, 1}, nn], nn]; subsetQ[matrix1_, matrix2_] := Apply[And, Map[! MemberQ[#, 1] &, matrix1 - matrix2]];Select[B, subsetQ[#, Clip[#.#]] &] // Length, {nn, 0, 4}]
Formula
Limit_{n->oo} a(n)/2^(n^2) = 1.
Extensions
a(5)-a(6) from Pontus von Brömssen, Jul 19 2022
Comments clarified by Geoffrey Critzer, Oct 16 2023
Comments