A355747 Number of multisets that can be obtained by choosing a divisor of each positive integer from 1 to n.
1, 1, 2, 4, 10, 20, 58, 116, 320, 772, 2170, 4340, 14112, 28224, 78120, 212004, 612232, 1224464, 3873760, 7747520, 24224608, 64595088, 175452168, 350904336
Offset: 0
Examples
The a(0) = 1 through a(4) = 10 multisets: {} {1} {1,1} {1,1,1} {1,1,1,1} {1,2} {1,1,2} {1,1,1,2} {1,1,3} {1,1,1,3} {1,2,3} {1,1,1,4} {1,1,2,2} {1,1,2,3} {1,1,2,4} {1,1,3,4} {1,2,2,3} {1,2,3,4}
Crossrefs
Programs
-
Mathematica
Table[Length[Union[Sort/@Tuples[Divisors/@Range[n]]]],{n,0,10}]
-
Python
from sympy import divisors from itertools import count, islice def agen(): s = {tuple()} for n in count(1): yield len(s) s = set(tuple(sorted(t+(d,))) for t in s for d in divisors(n)) print(list(islice(agen(), 16))) # Michael S. Branicky, Aug 03 2022
Formula
a(p) = 2*a(p-1) for p prime. - Michael S. Branicky, Aug 03 2022
Extensions
a(15)-a(21) from Michael S. Branicky, Aug 03 2022
a(22)-a(23) from Michael S. Branicky, Aug 08 2022