cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A355754 Irregular triangle read by rows: T(n,k) is the number of unlabeled n-node graphs with intersection number (or edge clique cover number) k; n >= 1, 0 <= k <= floor(n^2/4).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 2, 1, 1, 4, 9, 10, 7, 2, 1, 1, 5, 17, 36, 46, 30, 14, 4, 2, 1, 1, 6, 28, 97, 219, 281, 226, 116, 45, 18, 5, 1, 1, 1, 7, 43, 226, 872, 2104, 3170, 2927, 1774, 793, 290, 87, 37, 9, 3, 2, 1, 1, 8, 62, 472, 2966, 12882, 36595, 63842, 69294, 48881, 24939, 9808, 3387, 1059, 313, 107, 37, 9, 4, 1, 1
Offset: 1

Views

Author

Pontus von Brömssen, Jul 16 2022

Keywords

Examples

			Triangle begins:
  n\k | 0  1  2   3   4    5    6    7    8   9  10 11 12 13 14 15 16
  ----+--------------------------------------------------------------
   1  | 1
   2  | 1  1
   3  | 1  2  1
   4  | 1  3  4   2   1
   5  | 1  4  9  10   7    2    1
   6  | 1  5 17  36  46   30   14    4    2   1
   7  | 1  6 28  97 219  281  226  116   45  18   5  1  1
   8  | 1  7 43 226 872 2104 3170 2927 1774 793 290 87 37  9  3  2  1
		

Crossrefs

Cf. A000088 (row sums), A005744 (column k=2), A355755.

Formula

T(n,0) = 1.
T(n,1) = n-1.
T(n,2) = floor((n-2)*(2*n^2+7*n-12)/24) = A005744(n-2) = (4*n^3+6*n^2-52*n+45+3*(-1)^n)/48.
Showing 1-1 of 1 results.