A355756 Triangle read by rows: A(n,k) is the intersection number of the Turán graph T(n,k), 1 <= k <= n.
0, 0, 1, 0, 2, 1, 0, 4, 2, 1, 0, 6, 4, 2, 1, 0, 9, 4, 4, 2, 1, 0, 12, 6, 4, 4, 2, 1, 0, 16, 9, 5, 4, 4, 2, 1, 0, 20, 9, 6, 5, 4, 4, 2, 1, 0, 25, 12, 9, 6, 5, 4, 4, 2, 1, 0, 30, 16, 9, 6, 6, 5, 4, 4, 2, 1
Offset: 1
Examples
Triangle begins: n\k | 1 2 3 4 5 6 7 8 9 10 11 ----+-------------------------------- 1 | 0 2 | 0 1 3 | 0 2 1 4 | 0 4 2 1 5 | 0 6 4 2 1 6 | 0 9 4 4 2 1 7 | 0 12 6 4 4 2 1 8 | 0 16 9 5 4 4 2 1 9 | 0 20 9 6 5 4 4 2 1 10 | 0 25 12 9 6 5 4 4 2 1 11 | 0 30 16 9 6 6 5 4 4 2 1
Links
- Wikipedia, Intersection number
- Wikipedia, Turán graph
Programs
-
Python
from networkx import find_cliques,turan_graph from itertools import combinations,count def A355756(n,k): if k==1: return 0 G=turan_graph(n,k) cliques=[sorted(c) for c in find_cliques(G)] ne=G.number_of_edges() for r in count(1): for c0 in combinations(cliques[1:],r-1): c=(cliques[0],)+c0 if len(set().union(e for i in range(r) for e in combinations(c[i],2)))==ne: return r