cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355756 Triangle read by rows: A(n,k) is the intersection number of the Turán graph T(n,k), 1 <= k <= n.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 0, 4, 2, 1, 0, 6, 4, 2, 1, 0, 9, 4, 4, 2, 1, 0, 12, 6, 4, 4, 2, 1, 0, 16, 9, 5, 4, 4, 2, 1, 0, 20, 9, 6, 5, 4, 4, 2, 1, 0, 25, 12, 9, 6, 5, 4, 4, 2, 1, 0, 30, 16, 9, 6, 6, 5, 4, 4, 2, 1
Offset: 1

Views

Author

Pontus von Brömssen, Jul 16 2022

Keywords

Examples

			Triangle begins:
  n\k | 1  2  3  4  5  6  7  8  9 10 11
  ----+--------------------------------
   1  | 0
   2  | 0  1
   3  | 0  2  1
   4  | 0  4  2  1
   5  | 0  6  4  2  1
   6  | 0  9  4  4  2  1
   7  | 0 12  6  4  4  2  1
   8  | 0 16  9  5  4  4  2  1
   9  | 0 20  9  6  5  4  4  2  1
  10  | 0 25 12  9  6  5  4  4  2  1
  11  | 0 30 16  9  6  6  5  4  4  2  1
		

Crossrefs

Programs

  • Python
    from networkx import find_cliques,turan_graph
    from itertools import combinations,count
    def A355756(n,k):
        if k==1: return 0
        G=turan_graph(n,k)
        cliques=[sorted(c) for c in find_cliques(G)]
        ne=G.number_of_edges()
        for r in count(1):
            for c0 in combinations(cliques[1:],r-1):
                c=(cliques[0],)+c0
                if len(set().union(e for i in range(r) for e in combinations(c[i],2)))==ne:
                    return r

Formula

A(n,1) = 0.
A(n,2) = floor(n^2/4) = A002620(n).
A(n,3) = floor((n+1)/3)*floor((n+2)/3) = A008133(n+1).
A(n,n-k) = A(2*k,k) for 2 <= k <= n/2.
A(n,n-1) = 2 for n >= 3.
A(n,n) = 1 for n >= 2.
A(n,k) >= floor((n+k-1)/k)*floor((n+k-2)/k) for k >= 2.