cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355770 a(n) is the number of terms of A333369 that divide n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 3, 2, 1, 2, 2, 2, 4, 1, 2, 3, 2, 2, 3, 2, 1, 2, 2, 2, 3, 2, 1, 4, 2, 1, 2, 2, 4, 3, 2, 2, 4, 2, 1, 3, 1, 3, 5, 1, 1, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 1, 2, 4, 1, 2, 4, 1, 3, 4, 1, 2, 2, 4, 2, 3, 2, 2, 5, 2, 2, 4, 2, 2, 3, 1, 1, 3, 3, 1, 2
Offset: 1

Views

Author

Bernard Schott, Jul 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    q[n_] := AllTrue[Tally @ IntegerDigits[n], EvenQ[Plus @@ #] &]; a[n_] := DivisorSum[n, 1 &, q[#] &]; Array[a, 100] (* Amiram Eldar, Jul 16 2022 *)
  • PARI
    issimber(m) = my(d=digits(m), s=Set(d)); for (i=1, #s, if (#select(x->(x==s[i]), d) % 2 != (s[i] % 2), return (0))); return (1); \\ A333369
    a(n) = sumdiv(n, d, issimber(d)); \\ Michel Marcus, Jul 18 2022
  • Python
    from sympy import divisors
    def c(n): s = str(n); return all(s.count(d)%2 == int(d)%2 for d in set(s))
    def a(n): return sum(1 for d in divisors(n, generator=True) if c(d))
    print([a(n) for n in range(1, 88)]) # Michael S. Branicky, Jul 16 2022
    

Extensions

More terms from Michael S. Branicky, Jul 16 2022