A355770 a(n) is the number of terms of A333369 that divide n.
1, 1, 2, 1, 2, 2, 2, 1, 3, 2, 1, 2, 2, 2, 4, 1, 2, 3, 2, 2, 3, 2, 1, 2, 2, 2, 3, 2, 1, 4, 2, 1, 2, 2, 4, 3, 2, 2, 4, 2, 1, 3, 1, 3, 5, 1, 1, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 1, 2, 4, 1, 2, 4, 1, 3, 4, 1, 2, 2, 4, 2, 3, 2, 2, 5, 2, 2, 4, 2, 2, 3, 1, 1, 3, 3, 1, 2
Offset: 1
Crossrefs
Programs
-
Mathematica
q[n_] := AllTrue[Tally @ IntegerDigits[n], EvenQ[Plus @@ #] &]; a[n_] := DivisorSum[n, 1 &, q[#] &]; Array[a, 100] (* Amiram Eldar, Jul 16 2022 *)
-
PARI
issimber(m) = my(d=digits(m), s=Set(d)); for (i=1, #s, if (#select(x->(x==s[i]), d) % 2 != (s[i] % 2), return (0))); return (1); \\ A333369 a(n) = sumdiv(n, d, issimber(d)); \\ Michel Marcus, Jul 18 2022
-
Python
from sympy import divisors def c(n): s = str(n); return all(s.count(d)%2 == int(d)%2 for d in set(s)) def a(n): return sum(1 for d in divisors(n, generator=True) if c(d)) print([a(n) for n in range(1, 88)]) # Michael S. Branicky, Jul 16 2022
Extensions
More terms from Michael S. Branicky, Jul 16 2022