A355773 Numbers all of whose divisors are members of A333369.
1, 3, 5, 7, 9, 13, 15, 17, 19, 31, 35, 37, 39, 51, 53, 57, 59, 71, 73, 79, 91, 93, 95, 97, 111, 137, 139, 153, 157, 159, 173, 179, 193, 197, 221, 223, 227, 229, 317, 333, 359, 371, 379, 395, 397, 443, 449, 519, 537, 571, 579, 591, 593, 661, 663, 669, 719, 739
Offset: 1
Examples
111 is a term since all the divisors of 111, i.e., 1, 3, 37 and 111, are in A333369.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
- Project Euler, Problem 520: Simbers.
Crossrefs
Programs
-
Mathematica
simQ[n_] := AllTrue[Tally @ IntegerDigits[n], EvenQ[Plus @@ #] &]; Select[Range[1000], AllTrue[Divisors[#], simQ] &] (* Amiram Eldar, Jul 19 2022 *)
-
PARI
issimber(m) = my(d=digits(m), s=Set(d)); for (i=1, #s, if (#select(x->(x==s[i]), d) % 2 != (s[i] % 2), return (0))); return (1); \\ A333369 isok(k) = fordiv(k, d, if (!issimber(d), return(0))); return(1); \\ Michel Marcus, Jul 19 2022
-
Python
from sympy import divisors, isprime def c(n): s = str(n); return all(s.count(d)%2 == int(d)%2 for d in set(s)) def ok(n): return n > 0 and all(c(d) for d in divisors(n, generator=True)) print([k for k in range(740) if ok(k)]) # Michael S. Branicky, Jul 24 2022
Comments