cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A355771 a(n) is the smallest integer that has exactly n divisors from A333369.

Original entry on oeis.org

1, 3, 9, 15, 45, 105, 195, 315, 945, 900, 1575, 2100, 3900, 6825, 11655, 10500, 6300, 18900, 25200, 35100, 27300, 31500, 44100, 94500, 157500, 107100, 81900, 233100, 220500, 598500, 245700, 333900, 409500, 491400, 900900, 573300, 600600, 1228500, 1669500, 1965600
Offset: 1

Views

Author

Bernard Schott, Jul 17 2022

Keywords

Examples

			15 has 4 divisors: {1, 3, 5, 15} all of which are in A333369 integers, and no smaller number has this property, hence a(4) = 15.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := AllTrue[Tally @ IntegerDigits[n], EvenQ[Plus @@ #] &]; f[n_] := DivisorSum[n, 1 &, q[#] &]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n]; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[40, 10^7] (* Amiram Eldar, Jul 17 2022 *)
  • PARI
    issimber(m) = my(d=digits(m), s=Set(d)); for (i=1, #s, if (#select(x->(x==s[i]), d) % 2 != (s[i] % 2), return (0))); return (1); \\ A333369
    a(n) = my(k=1); while (sumdiv(k, d, issimber(d)) != n, k++); k; \\ Michel Marcus, Jul 18 2022
    
  • Python
    from sympy import divisors
    from itertools import count, islice
    def c(n): s = str(n); return all(s.count(d)%2 == int(d)%2 for d in set(s))
    def f(n): return sum(1 for d in divisors(n, generator=True) if c(d))
    def agen():
        n, adict = 1, dict()
        for k in count(1):
            fk = f(k)
            if fk not in adict: adict[fk] = k
            while n in adict: yield adict[n]; n += 1
    print(list(islice(agen(), 29))) # Michael S. Branicky, Jul 23 2022

Extensions

More terms from Amiram Eldar, Jul 17 2022

A355770 a(n) is the number of terms of A333369 that divide n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 3, 2, 1, 2, 2, 2, 4, 1, 2, 3, 2, 2, 3, 2, 1, 2, 2, 2, 3, 2, 1, 4, 2, 1, 2, 2, 4, 3, 2, 2, 4, 2, 1, 3, 1, 3, 5, 1, 1, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 1, 2, 4, 1, 2, 4, 1, 3, 4, 1, 2, 2, 4, 2, 3, 2, 2, 5, 2, 2, 4, 2, 2, 3, 1, 1, 3, 3, 1, 2
Offset: 1

Views

Author

Bernard Schott, Jul 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    q[n_] := AllTrue[Tally @ IntegerDigits[n], EvenQ[Plus @@ #] &]; a[n_] := DivisorSum[n, 1 &, q[#] &]; Array[a, 100] (* Amiram Eldar, Jul 16 2022 *)
  • PARI
    issimber(m) = my(d=digits(m), s=Set(d)); for (i=1, #s, if (#select(x->(x==s[i]), d) % 2 != (s[i] % 2), return (0))); return (1); \\ A333369
    a(n) = sumdiv(n, d, issimber(d)); \\ Michel Marcus, Jul 18 2022
  • Python
    from sympy import divisors
    def c(n): s = str(n); return all(s.count(d)%2 == int(d)%2 for d in set(s))
    def a(n): return sum(1 for d in divisors(n, generator=True) if c(d))
    print([a(n) for n in range(1, 88)]) # Michael S. Branicky, Jul 16 2022
    

Extensions

More terms from Michael S. Branicky, Jul 16 2022

A355772 Positions of records in A355770.

Original entry on oeis.org

1, 3, 9, 15, 45, 105, 195, 315, 900, 1575, 2100, 3900, 6300, 18900, 25200, 27300, 31500, 44100, 81900, 220500, 245700, 333900, 409500, 491400, 573300, 600600, 1201200, 2402400, 3603600, 4804800, 7207200, 10810800, 14414400, 20420400, 21621600, 40840800, 43243200
Offset: 1

Views

Author

Bernard Schott, Jul 18 2022

Keywords

Comments

Corresponding records are 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 17, ...

Examples

			a(5) = 45 is in the sequence because A355770(45) = 5 is larger than any earlier value in A355770.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := AllTrue[Tally @ IntegerDigits[n], EvenQ[Plus @@ #] &]; f[n_] := DivisorSum[n, 1 &, q[#] &]; fm = -1; s = {}; Do[If[(fn = f[n]) > fm, fm = fn; AppendTo[s, n]], {n, 1, 10^5}]; s (* Amiram Eldar, Jul 18 2022 *)
  • Python
    from sympy import divisors
    from itertools import count, islice
    def c(n): s = str(n); return all(s.count(d)%2 == int(d)%2 for d in set(s))
    def f(n): return sum(1 for d in divisors(n, generator=True) if c(d))
    def agen(record=-1):
        for k in count(1):
            if f(k) > record: record = f(k); yield k
    print(list(islice(agen(), 20))) # Michael S. Branicky, Jul 25 2022

Extensions

a(21)-a(31) from Michel Marcus, Jul 18 2022
a(32)-a(37) from Amiram Eldar, Jul 18 2022

A355853 Primes in A333369.

Original entry on oeis.org

3, 5, 7, 13, 17, 19, 31, 37, 53, 59, 71, 73, 79, 97, 137, 139, 157, 173, 179, 193, 197, 223, 227, 229, 317, 359, 379, 397, 443, 449, 571, 593, 661, 719, 739, 751, 881, 883, 887, 937, 953, 971, 1009, 1117, 1151, 1171, 1223, 1229, 1447, 1511, 1579, 1597, 1663, 1667, 1669
Offset: 1

Views

Author

Bernard Schott, Jul 19 2022

Keywords

Examples

			443 is prime and 443 has two 4's and one 3 in its decimal expansion, hence 443 is a term.
		

Crossrefs

Intersection of A000040 and A333369.
Subsequence of A355773.
Supersequence of A155045.
Similar sequences: A002385, A004023.

Programs

  • Mathematica
    simQ[n_] := AllTrue[Tally @ IntegerDigits[n], EvenQ[Plus @@ #] &]; Select[Prime[Range[300]], simQ] (* Amiram Eldar, Jul 19 2022 *)
  • PARI
    issimber(m) = my(d=digits(m), s=Set(d)); for (i=1, #s, if (#select(x->(x==s[i]), d) % 2 != (s[i] % 2), return (0))); return (1); \\ A333369
    isok(m) = isprime(m) && issimber(m); \\ Michel Marcus, Jul 19 2022
    
  • Python
    from itertools import count, islice
    from sympy import isprime
    def A355853_gen(startvalue=1): # generator of terms
        return filter(lambda n:not any((str(n).count(d)^int(d))&1 for d in set(str(n))) and isprime(n),count(max(startvalue,1)))
    A355853_list = list(islice(A355853_gen(),30)) # Chai Wah Wu, Jul 21 2022

Extensions

Extended by Michel Marcus, Jul 19 2022
Showing 1-4 of 4 results.