A355771 a(n) is the smallest integer that has exactly n divisors from A333369.
1, 3, 9, 15, 45, 105, 195, 315, 945, 900, 1575, 2100, 3900, 6825, 11655, 10500, 6300, 18900, 25200, 35100, 27300, 31500, 44100, 94500, 157500, 107100, 81900, 233100, 220500, 598500, 245700, 333900, 409500, 491400, 900900, 573300, 600600, 1228500, 1669500, 1965600
Offset: 1
Examples
15 has 4 divisors: {1, 3, 5, 15} all of which are in A333369 integers, and no smaller number has this property, hence a(4) = 15.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..87
Crossrefs
Programs
-
Mathematica
q[n_] := AllTrue[Tally @ IntegerDigits[n], EvenQ[Plus @@ #] &]; f[n_] := DivisorSum[n, 1 &, q[#] &]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n]; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[40, 10^7] (* Amiram Eldar, Jul 17 2022 *)
-
PARI
issimber(m) = my(d=digits(m), s=Set(d)); for (i=1, #s, if (#select(x->(x==s[i]), d) % 2 != (s[i] % 2), return (0))); return (1); \\ A333369 a(n) = my(k=1); while (sumdiv(k, d, issimber(d)) != n, k++); k; \\ Michel Marcus, Jul 18 2022
-
Python
from sympy import divisors from itertools import count, islice def c(n): s = str(n); return all(s.count(d)%2 == int(d)%2 for d in set(s)) def f(n): return sum(1 for d in divisors(n, generator=True) if c(d)) def agen(): n, adict = 1, dict() for k in count(1): fk = f(k) if fk not in adict: adict[fk] = k while n in adict: yield adict[n]; n += 1 print(list(islice(agen(), 29))) # Michael S. Branicky, Jul 23 2022
Extensions
More terms from Amiram Eldar, Jul 17 2022
Comments